Suppr超能文献

使用多输出分类的自适应情感分析:性能比较

Adaptive sentiment analysis using multioutput classification: a performance comparison.

作者信息

Hariguna Taqwa, Ruangkanjanases Athapol

机构信息

Information Systems, Universitas Amikom Purwokerto, Purwokerto, Jawa Tengah, Indonesia.

Department of Commerce Chulalongkorn Business School, Chulalongkorn University, Bangkok, Thailand.

出版信息

PeerJ Comput Sci. 2023 May 9;9:e1378. doi: 10.7717/peerj-cs.1378. eCollection 2023.

Abstract

The primary objective of this research is to create a multi-output classification model for sentiment analysis through the combination of 10 algorithms: BernoulliNB, Decision Tree, K-nearest neighbor, Logistic Regression, LinearSVC, Bagging, Stacking, Random Forest, AdaBoost, and ExtraTrees. In doing so, we aim to identify the optimal algorithm performance and role within the model. The data utilized in this study is derived from customer reviews of cryptocurrencies in Indonesia. Our results indicate that LinearSVC and Stacking exhibit a high accuracy (90%) compared to the other eight algorithms. The resulting multi-output model demonstrates an average accuracy of 88%, which can be considered satisfactory. This research endeavors to innovate in adaptive sentiment analysis classification by developing a multi-output model that utilizes a combination of 10 classification algorithms.

摘要

本研究的主要目标是通过结合10种算法创建一个用于情感分析的多输出分类模型:伯努利朴素贝叶斯、决策树、K近邻、逻辑回归、线性支持向量分类器、装袋法、堆叠法、随机森林、自适应增强和极端随机树。通过这样做,我们旨在确定模型内最优的算法性能和作用。本研究中使用的数据来自印度尼西亚加密货币的客户评论。我们的结果表明,与其他八种算法相比,线性支持向量分类器和堆叠法表现出较高的准确率(90%)。所得的多输出模型显示平均准确率为88%,这可以认为是令人满意的。本研究致力于通过开发一个利用10种分类算法组合的多输出模型,在自适应情感分析分类方面进行创新。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/792c/10280487/ec1f9e0647a5/peerj-cs-09-1378-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验