Suppr超能文献

基于数据驱动的自适应 GM(1,1)时间序列热舒适预测模型。

Data-driven adaptive GM(1,1) time series prediction model for thermal comfort.

机构信息

Faculty of Information Technology, Beijing University of Technology, Beijing, 100124, China.

Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing University of Technology, Beijing, 100124, China.

出版信息

Int J Biometeorol. 2023 Aug;67(8):1335-1344. doi: 10.1007/s00484-023-02500-9. Epub 2023 Jun 22.

Abstract

In this paper, the future prediction of predicted mean vote (PMV) index of indoor environment is studied. PMV is the evaluation index used in this paper to represent the thermal comfort of human body. According to the literature, the main environmental factors affecting PMV index are temperature, humidity, black globe temperature, wind speed, average radiation temperature, and clothing surface temperature, and there is a complex nonlinear relationship between the six variables. Due to the coupling relationship between the six parameters, the PMV formula can be simplified under specific conditions, reducing the monitoring of variables that are difficult to observe. Then, the improved grey system prediction model GM(1,1) with optimized selection dimension is used to predict the future time of PMV. Due to the irregularity, uncertainty and fluctuation of PMV values in time series, based on the original GM(1,1) time series prediction, an adaptive GM(1,1) improved model is proposed, which can continuously change with time series and enhance its prediction accuracy. By contrast, the improved GM(1,1) model can be derived from the sliding window of the adaptive model through changes in the dataset and get better model grades. It lays a foundation for the future research on the predicted index of PMV, so as to set and control the air conditioning system in advance, to meet the intelligence of modern intelligent home and humanized function of sensing human comfort.

摘要

本文研究了室内环境预测平均投票数(PMV)指数的未来预测。PMV 是本文用于表示人体热舒适的评价指标。根据文献,主要影响 PMV 指数的环境因素有温度、湿度、黑球温度、风速、平均辐射温度和服装表面温度,这六个变量之间存在复杂的非线性关系。由于六个参数之间存在耦合关系,因此可以在特定条件下简化 PMV 公式,减少对难以观察的变量的监测。然后,采用具有优化选择维数的改进灰色系统预测模型 GM(1,1)来预测 PMV 的未来时间。由于 PMV 值在时间序列中具有不规则性、不确定性和波动性,因此基于原始 GM(1,1)时间序列预测,提出了一种自适应 GM(1,1)改进模型,该模型可以随着时间序列的变化而不断变化,从而提高其预测精度。相比之下,通过改变数据集,自适应模型可以推导出改进的 GM(1,1)模型,从而获得更好的模型等级。这为未来 PMV 预测指标的研究奠定了基础,以便提前设置和控制空调系统,满足现代智能家居的智能化和感知人体舒适度的人性化功能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验