Suppr超能文献

通过代谢工程化的纤维素分解真菌嗜热毁丝霉进行生物乙醇生产的综合生物加工。

Consolidated bioprocessing for bioethanol production by metabolically engineered cellulolytic fungus Myceliophthora thermophila.

机构信息

Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China.

出版信息

Metab Eng. 2023 Jul;78:192-199. doi: 10.1016/j.ymben.2023.06.009. Epub 2023 Jun 20.

Abstract

Using cellulosic ethanol as fuel is one way to help achieve the world's decarbonization goals. However, the economics of the present technology are unfavorable, especially the cost of cellulose degradation. Here, we reprogram the thermophilic cellulosic fungus Myceliophthora thermophila to directly ferment cellulose into ethanol by mimicking the aerobic ethanol fermentation of yeast (the Crabtree effect), including optimizing the synthetic pathway, enhancing the glycolytic rate, inhibiting mitochondrial NADH shuttles, and knocking out ethanol consumption pathway. The final engineered strain produced 52.8 g/L ethanol directly from cellulose, and 39.8 g/L from corncob, without the need for any added cellulase, while the starting strain produced almost no ethanol. We also demonstrate that as the ethanol fermentation by engineered M. thermophila increases, the composition and expression of cellulases that facilitate the degradation of cellulose, especially cellobiohydrolases, changes. The simplified production process and significantly increased ethanol yield indicate that the fungal consolidated bioprocessing technology that we develop here (one-step, one-strain ethanol production) is promising for fueling sustainable carbon-neutral biomanufacturing in the future.

摘要

使用纤维素乙醇作为燃料是帮助实现世界脱碳目标的一种方法。然而,目前该技术的经济性并不理想,特别是纤维素降解的成本。在这里,我们通过模拟酵母的需氧乙醇发酵(即 Crabtree 效应),重新编程嗜热纤维素真菌嗜热毁丝霉,将纤维素直接发酵成乙醇,包括优化合成途径、提高糖酵解速率、抑制线粒体 NADH 穿梭和敲除乙醇消耗途径。最终的工程菌株能够直接从纤维素中生产 52.8 g/L 的乙醇,从玉米芯中生产 39.8 g/L 的乙醇,而无需添加任何纤维素酶,而起始菌株几乎不产生乙醇。我们还证明,随着工程化 M. thermophila 的乙醇发酵增加,有助于纤维素降解的纤维素酶(特别是纤维二糖水解酶)的组成和表达发生变化。简化的生产工艺和显著提高的乙醇产量表明,我们在此开发的真菌整合生物加工技术(一步法,一株菌生产乙醇)有望为未来可持续的碳中和生物制造提供燃料。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验