Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Shenshan Medical Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Shanwei, China.
Neurobiol Dis. 2023 Aug;184:106210. doi: 10.1016/j.nbd.2023.106210. Epub 2023 Jun 21.
The progressive neurodegenerative disease amyotrophic lateral sclerosis (ALS) is caused by a decline in motor neuron function, resulting in worsened motor impairments, malnutrition, respiratory failure and mortality, and there is a lack of effective clinical treatments. The exact mechanism of motor neuronal degeneration remains unclear. Previously, we reported that ferroptosis, which is characterized by the accumulation of lipid peroxide and glutathione depletion in an iron-dependent manner, contributed to motor neuronal death in ALS cell models with the hSOD1 (human Cu/Zn-superoxide dismutase) gene mutation. In this study, we further explored the role of ferroptosis in motor neurons and its regulation in mutant hSOD1 cell and mouse models. Our results showed that ferroptosis was activated in hSOD1 NSC-34 cells and mouse models, which was accompanied by decreased nuclear retention of nuclear factor erythroid 2-related factor 2 (NRF2) and downregulation of solute carrier family 7 member 11 (SLC7A11) and glutathione peroxidase 4 (GPX4) levels. Moreover, RTA-408, an NRF2 activator, inhibited ferroptosis in hSOD1 NSC-34 cells by upregulating the protein expression of SLC7A11 and GPX4. Moreover, hSOD1 mice treated with RTA-408 showed obvious improvements in body weight and motor function. Our study demonstrated that ferroptosis contributed to the toxicity of motor neurons and that activating NRF2 could alleviate neuronal degeneration in ALS with the hSOD1 mutation.
进行性神经退行性疾病肌萎缩侧索硬化症(ALS)是由运动神经元功能下降引起的,导致运动损伤加重、营养不良、呼吸衰竭和死亡,目前缺乏有效的临床治疗方法。运动神经元退化的确切机制仍不清楚。先前,我们报道了铁依赖性脂质过氧化物积累和谷胱甘肽耗竭的铁死亡,导致携带 hSOD1(人 Cu/Zn-超氧化物歧化酶)基因突变的 ALS 细胞模型中的运动神经元死亡。在这项研究中,我们进一步探讨了铁死亡在运动神经元中的作用及其在突变 hSOD1 细胞和小鼠模型中的调控作用。我们的结果表明,铁死亡在 hSOD1 NSC-34 细胞和小鼠模型中被激活,伴随着核因子红细胞 2 相关因子 2(NRF2)的核内保留减少和溶质载体家族 7 成员 11(SLC7A11)和谷胱甘肽过氧化物酶 4(GPX4)水平下调。此外,NRF2 激活剂 RTA-408 通过上调 SLC7A11 和 GPX4 的蛋白表达抑制 hSOD1 NSC-34 细胞中的铁死亡。此外,用 RTA-408 治疗的 hSOD1 小鼠的体重和运动功能明显改善。我们的研究表明,铁死亡导致运动神经元毒性,激活 NRF2 可以减轻携带 hSOD1 突变的 ALS 中的神经元退化。