University Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France.
Université de Lille, CNRS, INSERM, CHU Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille, France.
J Biol Chem. 2023 Aug;299(8):104950. doi: 10.1016/j.jbc.2023.104950. Epub 2023 Jun 23.
Xenopus oocytes are encompassed by a layer of follicular cells that contribute to oocyte growth and meiosis in relation to oocyte maturation. However, the effects of the interaction between follicular cells and the oocyte surface on meiotic processes are unclear. Here, we investigated Xenopus follicular cell function using oocyte signaling and heterologous-expressing capabilities. We found that oocytes deprotected from their surrounding layer of follicular cells and expressing the epidermal growth factor (EGF) receptor (EGFR) and the Grb7 adaptor undergo accelerated prophase I to metaphase II meiosis progression upon stimulation by EGF. This unusual maturation unravels atypical spindle formation but is rescued by inhibiting integrin β1 or Grb7 binding to the EGFR. In addition, we determined that oocytes surrounded by their follicular cells expressing EGFR-Grb7 exhibit normal meiotic resumption. These oocytes are protected from abnormal meiotic spindle formation through the recruitment of O-GlcNAcylated Grb7, and OGT (O-GlcNAc transferase), the enzyme responsible for O-GlcNAcylation processes, in the integrin β1-EGFR complex. Folliculated oocytes can be forced to adopt an abnormal phenotype and exclusive Grb7 Y338 and Y188 phosphorylation instead of O-GlcNAcylation under integrin activation. Furthermore, an O-GlcNAcylation increase (by inhibition of O-GlcNAcase), the glycosidase that removes O-GlcNAc moieties, or decrease (by inhibition of OGT) amplifies oocyte spindle defects when follicular cells are absent highlighting a control of the meiotic spindle by the OGT-O-GlcNAcase duo. In summary, our study provides further insight into the role of the follicular cell layer in oocyte meiosis progression.
爪蟾卵母细胞被一层滤泡细胞包围,这些滤泡细胞有助于卵母细胞的生长和减数分裂,与卵母细胞的成熟有关。然而,滤泡细胞与卵母细胞表面之间的相互作用对减数分裂过程的影响尚不清楚。在这里,我们利用卵母细胞信号转导和异源表达能力研究了爪蟾滤泡细胞的功能。我们发现,当卵母细胞从周围的滤泡细胞层中解脱出来,并表达表皮生长因子(EGF)受体(EGFR)和 Grb7 衔接蛋白时,它们会经历加速的前期 I 至中期 II 的减数分裂进程,这一进程受到 EGF 的刺激。这种不寻常的成熟会导致异常的纺锤体形成,但可以通过抑制整合素 β1 或 Grb7 与 EGFR 的结合来挽救。此外,我们确定了周围有表达 EGFR-Grb7 的滤泡细胞的卵母细胞表现出正常的减数分裂恢复。这些卵母细胞通过招募 O-GlcNAc 化的 Grb7 和 OGT(O-GlcNAc 转移酶),即负责 O-GlcNAc 化过程的酶,来保护自己免受异常的减数分裂纺锤体形成的影响,该酶存在于整合素 β1-EGFR 复合物中。在整合素激活的情况下,滤泡化的卵母细胞可以被迫表现出异常表型,并且只有 Grb7 的 Y338 和 Y188 磷酸化而不是 O-GlcNAc 化。此外,当滤泡细胞不存在时,通过抑制 O-GlcNAcase(一种去除 O-GlcNAc 部分的糖苷酶)增加 O-GlcNAc 化或通过抑制 OGT 减少 O-GlcNAc 化会放大卵母细胞纺锤体缺陷,这突出了 OGT-O-GlcNAcase 双酶对减数分裂纺锤体的控制作用。总之,我们的研究为滤泡细胞层在卵母细胞减数分裂进程中的作用提供了进一步的见解。