Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Alabama, USA.
Comprehensive Diabetes Center, University of Alabama at Birmingham, Alabama, USA.
Compr Physiol. 2023 Jun 26;13(3):5023-5049. doi: 10.1002/cphy.c220031.
Impaired glucose tolerance (IGT) and β-cell dysfunction in insulin resistance associated with obesity lead to type 2 diabetes (T2D). Glucose-stimulated insulin secretion (GSIS) from β-cells occurs via a canonical pathway that involves glucose metabolism, ATP generation, inactivation of K channels, plasma membrane depolarization, and increases in cytosolic concentrations of [Ca ] . However, optimal insulin secretion requires amplification of GSIS by increases in cyclic adenosine monophosphate (cAMP) signaling. The cAMP effectors protein kinase A (PKA) and exchange factor activated by cyclic-AMP (Epac) regulate membrane depolarization, gene expression, and trafficking and fusion of insulin granules to the plasma membrane for amplifying GSIS. The widely recognized lipid signaling generated within β-cells by the β-isoform of Ca -independent phospholipase A enzyme (iPLA β) participates in cAMP-stimulated insulin secretion (cSIS). Recent work has identified the role of a G-protein coupled receptor (GPCR) activated signaling by the complement 1q like-3 (C1ql3) secreted protein in inhibiting cSIS. In the IGT state, cSIS is attenuated, and the β-cell function is reduced. Interestingly, while β-cell-specific deletion of iPLA β reduces cAMP-mediated amplification of GSIS, the loss of iPLA β in macrophages (MØ) confers protection against the development of glucose intolerance associated with diet-induced obesity (DIO). In this article, we discuss canonical (glucose and cAMP) and novel noncanonical (iPLA β and C1ql3) pathways and how they may affect β-cell (dys)function in the context of impaired glucose intolerance associated with obesity and T2D. In conclusion, we provide a perspective that in IGT states, targeting noncanonical pathways along with canonical pathways could be a more comprehensive approach for restoring β-cell function in T2D. © 2023 American Physiological Society. Compr Physiol 13:5023-5049, 2023.
葡萄糖耐量受损(IGT)和胰岛素抵抗相关的β细胞功能障碍导致 2 型糖尿病(T2D)。β细胞的葡萄糖刺激胰岛素分泌(GSIS)通过涉及葡萄糖代谢、ATP 生成、K+通道失活、质膜去极化以及胞质中[Ca2+]浓度增加的经典途径发生。然而,最佳的胰岛素分泌需要通过增加环腺苷酸单磷酸(cAMP)信号来放大 GSIS。cAMP 效应物蛋白激酶 A(PKA)和环 AMP 激活的交换因子(Epac)调节质膜去极化、基因表达以及胰岛素颗粒向质膜的运输和融合,从而放大 GSIS。广泛认可的β细胞内脂质信号由钙非依赖性磷脂酶 A2 同工酶(iPLA2β)产生,参与 cAMP 刺激的胰岛素分泌(cSIS)。最近的工作确定了补体 1q 样 3(C1ql3)分泌蛋白激活 G 蛋白偶联受体(GPCR)信号在抑制 cSIS 中的作用。在 IGT 状态下,cSIS 减弱,β细胞功能降低。有趣的是,虽然β细胞特异性缺失 iPLA2β会降低 cAMP 介导的 GSIS 放大,但巨噬细胞(MØ)中 iPLA2β 的缺失赋予了对饮食诱导肥胖相关葡萄糖不耐受发展的保护作用。在本文中,我们讨论了经典(葡萄糖和 cAMP)和新的非经典(iPLA2β和 C1ql3)途径,以及它们如何在肥胖和 T2D 相关的葡萄糖耐量受损的情况下影响β细胞(功能障碍)。总之,我们提供了一个观点,即在 IGT 状态下,靶向非经典途径和经典途径可能是恢复 T2D 中β细胞功能的更全面方法。2023 年美国生理学会。综合生理学 13:5023-5049。