Suppr超能文献

通过同时强化和植酸降解提高微量营养素吸收。

Enhancing micronutrient absorption through simultaneous fortification and phytic acid degradation.

作者信息

Kumari Ankanksha, Roy Anupam

机构信息

Laboratory of Applied Food Chemistry, Microbiology, and Process Engineering, Department of Chemical Engineering, Birla Institute of Technology Mesra, Ranchi, Jharkhand India.

出版信息

Food Sci Biotechnol. 2023 Jan 27;32(9):1235-1256. doi: 10.1007/s10068-023-01255-8. eCollection 2023 Aug.

Abstract

Phytic acid (PA), an endogenous antinutrient in cereals and legumes, hinders mineral absorption by forming less bioavailable, stable PA-mineral complexes. For individual micronutrients, the PA-to-mineral molar ratio below the critical level ensures better bioavailability and is achieved by adding minerals or removing PA from cereals and pulses. Although several PA reduction and fortification strategies are available, the inability to completely eradicate or degrade PA using available techniques always subdues fortification's impact by hindering fortified micronutrient absorption. The bioavailability of micronutrients could be increased through simultaneous PA degradation and fortification. Following primary PA reduction of the raw material, the fortification step should also incorporate additional essential control stages to further PA inactivation, improving micronutrient absorption. In this review, the chemistry of PA interaction with metal ions, associated controlling parameters, and its impact on PA reduction during fortification is also evaluated, and further suggestions were made for the fortification's success.

摘要

植酸(PA)是谷物和豆类中的一种内源性抗营养物质,它通过形成生物利用率较低的稳定的PA-矿物质复合物来阻碍矿物质吸收。对于单一的微量营养素而言,PA与矿物质的摩尔比低于临界水平可确保更好的生物利用率,这可以通过添加矿物质或从谷物和豆类中去除PA来实现。尽管有几种降低PA和强化营养的策略,但由于无法使用现有技术完全消除或降解PA,强化营养的效果总是会受到阻碍,因为PA会妨碍强化微量营养素的吸收。通过同时降解PA和强化营养,可以提高微量营养素的生物利用率。在对原材料进行初步PA降低处理后,强化营养步骤还应纳入额外的关键控制阶段,以进一步使PA失活,从而改善微量营养素的吸收。在本综述中,还评估了PA与金属离子相互作用的化学性质、相关控制参数及其对强化营养过程中PA降低的影响,并对强化营养的成功实施提出了进一步建议。

相似文献

1
Enhancing micronutrient absorption through simultaneous fortification and phytic acid degradation.
Food Sci Biotechnol. 2023 Jan 27;32(9):1235-1256. doi: 10.1007/s10068-023-01255-8. eCollection 2023 Aug.
4
Fortification of rice with vitamins and minerals for addressing micronutrient malnutrition.
Cochrane Database Syst Rev. 2019 Oct 25;2019(10):CD009902. doi: 10.1002/14651858.CD009902.pub2.
8
New approaches, bioavailability and the use of chelates as a promising method for food fortification.
Food Chem. 2022 Mar 30;373(Pt A):131394. doi: 10.1016/j.foodchem.2021.131394. Epub 2021 Oct 13.
9
Influence of vegetable protein sources on trace element and mineral bioavailability.
J Nutr. 2003 Sep;133(9):2973S-7S. doi: 10.1093/jn/133.9.2973S.
10
Concept of double salt fortification; a tool to curtail micronutrient deficiencies and improve human health status.
J Sci Food Agric. 2014 Nov;94(14):2830-8. doi: 10.1002/jsfa.6634. Epub 2014 Apr 10.

引用本文的文献

1
Dietary Zn-Recent Advances in Studies on Its Bioaccessibility and Bioavailability.
Molecules. 2025 Jun 25;30(13):2742. doi: 10.3390/molecules30132742.
2
Enhancing micronutrient bioavailability in wheat grain through organic fertilizer substitution.
Front Nutr. 2025 Apr 17;12:1559537. doi: 10.3389/fnut.2025.1559537. eCollection 2025.
4
Recent advances in phytase thermostability engineering towards potential application in the food and feed sectors.
Food Sci Biotechnol. 2024 Nov 1;34(1):1-18. doi: 10.1007/s10068-024-01690-1. eCollection 2025 Jan.

本文引用的文献

1
Importance of binary and ternary complex formation on the functional and nutritional properties of legume proteins in presence of phytic acid and calcium.
Crit Rev Food Sci Nutr. 2023 Nov;63(33):12036-12058. doi: 10.1080/10408398.2022.2098247. Epub 2022 Jul 19.
3
Ensuring the Efficacious Iron Fortification of Foods: A Tale of Two Barriers.
Nutrients. 2022 Apr 12;14(8):1609. doi: 10.3390/nu14081609.
4
Fucose-containing Abroma augusta mucilage hydrogel as a potential probiotic carrier with prebiotic function.
Food Chem. 2022 Sep 1;387:132941. doi: 10.1016/j.foodchem.2022.132941. Epub 2022 Apr 11.
5
Iron and zinc bioavailability in common bean (Phaseolus vulgaris) is dependent on chemical composition and cooking method.
Food Chem. 2022 Sep 1;387:132900. doi: 10.1016/j.foodchem.2022.132900. Epub 2022 Apr 5.
7
Effect of maize processing methods on the retention of minerals, phytic acid and amino acids when using high kernel-zinc maize.
Curr Res Food Sci. 2021 Mar 28;4:279-286. doi: 10.1016/j.crfs.2021.03.007. eCollection 2021.
8
Considerations for improvising fortified extruded rice products.
J Food Sci. 2021 Apr;86(4):1180-1200. doi: 10.1111/1750-3841.15656. Epub 2021 Mar 8.
9
Phytic acid and its interactions: Contributions to protein functionality, food processing, and safety.
Compr Rev Food Sci Food Saf. 2021 Mar;20(2):2081-2105. doi: 10.1111/1541-4337.12714. Epub 2021 Feb 8.
10
Iron- and Zinc-Fortified Lentil ( Medik.) Demonstrate Enhanced and Stable Iron Bioavailability After Storage.
Front Nutr. 2021 Jan 8;7:614812. doi: 10.3389/fnut.2020.614812. eCollection 2020.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验