Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China.
Chongqing Academy of Eco-Environmental Science, Chongqing 400700, China.
Environ Sci Technol. 2023 Jul 11;57(27):10117-10126. doi: 10.1021/acs.est.3c03431. Epub 2023 Jun 26.
Electrocatalytic reduction of nitrate to NH (NO3RR) on Cu offers sustainable NH production and nitrogen recycling from nitrate-contaminated water. However, Cu affords limited NO3RR activity owing to its unfavorable electronic state and the slow proton transfer on its surface, especially in neutral/alkaline media. Furthermore, although a synchronous "NO3RR and NH collection" system has been developed for nitrogen recycling from nitrate-laden water, no system is designed for natural water that generally contains low-concentration nitrate. Herein, we demonstrate that depositing Cu nanoparticles on a TiO support enables the formation of electron-deficient Cu species (0 < δ ≤ 2), which are more active than Cu in NO3RR. Furthermore, TiO-Cu coupling induces local electric-field enhancement that intensifies water adsorption/dissociation at the interface, accelerating proton transfer for NO3RR on Cu. With the dual enhancements, TiO-Cu delivers an NH-N selectivity of 90.5%, mass activity of 41.4 mg-N h g, specific activity of 377.8 mg-N h m, and minimal Cu leaching (<25.4 μg L) when treating 22.5 mg L of NO-N at -0.40 V, outperforming most of the reported Cu-based catalysts. A sequential NO3RR and NH collection system based on TiO-Cu was then proposed, which could recycle nitrogen from nitrate-contaminated water under a wide concentration window of 22.5-112.5 mg L at a rate of 209-630 mg m h. We also demonstrated this system could collect 83.9% of nitrogen from NO-N (19.3 mg L) in natural lake water.
电催化还原硝酸盐为 NH(NO3RR)在 Cu 上提供了可持续的 NH 生产和从硝酸盐污染的水中回收氮。然而,由于其不利的电子状态和表面质子转移缓慢,Cu 的 NO3RR 活性有限,尤其是在中性/碱性介质中。此外,尽管已经开发了用于从硝酸盐废水回收氮的同步“NO3RR 和 NH 收集”系统,但没有为一般含有低浓度硝酸盐的天然水设计系统。在此,我们证明在 TiO 载体上沉积 Cu 纳米颗粒能够形成电子缺 Cu 物种(0 < δ ≤ 2),其在 NO3RR 中比 Cu 更活跃。此外,TiO-Cu 耦合诱导局部电场增强,在界面处增强水的吸附/解离,加速 Cu 上的质子转移用于 NO3RR。通过双重增强,TiO-Cu 在处理 22.5 mg L 的 NO-N 时,在-0.40 V 下提供 90.5%的 NH-N 选择性、41.4 mg-N h g 的质量活性、377.8 mg-N h m 的比活性和最小的 Cu 浸出(<25.4 μg L),优于大多数报道的 Cu 基催化剂。然后提出了基于 TiO-Cu 的顺序 NO3RR 和 NH 收集系统,该系统可以在 22.5-112.5 mg L 的宽浓度范围内以 209-630 mg m h 的速率从硝酸盐污染的水中回收氮。我们还证明该系统可以从天然湖水中的 NO-N(19.3 mg L)中收集 83.9%的氮。