Suppr超能文献

机器学习算法检测融合 B 线。

Machine Learning Algorithm Detection of Confluent B-Lines.

机构信息

Department of Emergency Medicine, Yale University School of Medicine, New Haven, CT, USA.

Philips Research North America, Cambridge, MA, USA.

出版信息

Ultrasound Med Biol. 2023 Sep;49(9):2095-2102. doi: 10.1016/j.ultrasmedbio.2023.05.016. Epub 2023 Jun 24.

Abstract

OBJECTIVE

B-lines are a ring-down artifact of lung ultrasound that arise with increased alveolar water in conditions such as pulmonary edema and infectious pneumonitis. Confluent B-line presence may signify a different level of pathology compared with single B-lines. Existing algorithms aimed at B-line counting do not distinguish between single and confluent B-lines. The objective of this study was to test a machine learning algorithm for confluent B-line identification.

METHODS

This study used a subset of 416 clips from 157 subjects, previously acquired in a prospective study enrolling adults with shortness of breath at two academic medical centers, using a hand-held tablet and a 14-zone protocol. After exclusions, random sampling generated a total of 416 clips (146 curvilinear, 150 sector and 120 linear) for review. A group of five experts in point-of-care ultrasound blindly evaluated the clips for presence/absence of confluent B-lines. Ground truth was defined as majority agreement among the experts and used for comparison with the algorithm.

RESULTS

Confluent B-lines were present in 206 of 416 clips (49.5%). Sensitivity and specificity of confluent B-line detection by algorithm compared with expert determination were 83% (95% confidence interval [CI]: 0.77-0.88) and 92% (95% CI: 0.88-0.96). Sensitivity and specificity did not statistically differ between transducers. Agreement between algorithm and expert for confluent B-lines measured by unweighted κ was 0.75 (95% CI: 0.69-0.81) for the overall set.

CONCLUSION

The confluent B-line detection algorithm had high sensitivity and specificity for detection of confluent B-lines in lung ultrasound point-of-care clips, compared with expert determination.

摘要

目的

B 线是肺超声的一种振铃伪像,在肺水肿和感染性肺炎等肺泡水增加的情况下出现。与单个 B 线相比,融合 B 线的存在可能表示不同程度的病理学。现有的 B 线计数算法无法区分单个和融合 B 线。本研究旨在测试一种用于融合 B 线识别的机器学习算法。

方法

本研究使用了来自两个学术医疗中心的 157 名呼吸困难成年患者前瞻性研究中采集的 416 个片段的子集,使用手持平板电脑和 14 区方案。排除后,随机抽样生成了总共 416 个片段(146 个曲线形、150 个扇形和 120 个线性)进行回顾。五名床边超声专家对这些片段进行融合 B 线的存在/不存在进行了盲法评估。将多数专家的意见定义为ground truth,并将其与算法进行比较。

结果

在 416 个片段中有 206 个(49.5%)存在融合 B 线。算法检测融合 B 线的敏感性和特异性与专家确定的结果相比分别为 83%(95%置信区间 [CI]:0.77-0.88)和 92%(95% CI:0.88-0.96)。两种探头之间的敏感性和特异性没有统计学差异。算法与专家对融合 B 线的评估之间的一致性,以未加权 κ 表示,在总体数据集为 0.75(95% CI:0.69-0.81)。

结论

与专家判断相比,融合 B 线检测算法在床边超声点检测中对融合 B 线的检测具有较高的敏感性和特异性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验