Suppr超能文献

CRISPR 单碱基编辑:对变异克隆细胞系的计算预测。

CRISPR single base-editing: in silico predictions to variant clonal cell lines.

机构信息

Translational Oncology Group, Faculty of Science, School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia.

Faculty of Science, School of Life Sciences, Centre for Inflammation, Centenary Institute and the University of Technology Sydney, Sydney, NSW 2007, Australia.

出版信息

Hum Mol Genet. 2023 Aug 26;32(17):2704-2716. doi: 10.1093/hmg/ddad105.

Abstract

Engineering single base edits using CRISPR technology including specific deaminases and single-guide RNA (sgRNA) is a rapidly evolving field. Different types of base edits can be constructed, with cytidine base editors (CBEs) facilitating transition of C-to-T variants, adenine base editors (ABEs) enabling transition of A-to-G variants, C-to-G transversion base editors (CGBEs) and recently adenine transversion editors (AYBE) that create A-to-C and A-to-T variants. The base-editing machine learning algorithm BE-Hive predicts which sgRNA and base editor combinations have the strongest likelihood of achieving desired base edits. We have used BE-Hive and TP53 mutation data from The Cancer Genome Atlas (TCGA) ovarian cancer cohort to predict which mutations can be engineered, or reverted to wild-type (WT) sequence, using CBEs, ABEs or CGBEs. We have developed and automated a ranking system to assist in selecting optimally designed sgRNA that considers the presence of a suitable protospacer adjacent motif (PAM), the frequency of predicted bystander edits, editing efficiency and target base change. We have generated single constructs containing ABE or CBE editing machinery, an sgRNA cloning backbone and an enhanced green fluorescent protein tag (EGFP), removing the need for co-transfection of multiple plasmids. We have tested our ranking system and new plasmid constructs to engineer the p53 mutants Y220C, R282W and R248Q into WT p53 cells and shown that these mutants cannot activate four p53 target genes, mimicking the behaviour of endogenous p53 mutations. This field will continue to rapidly progress, requiring new strategies such as we propose to ensure desired base-editing outcomes.

摘要

利用 CRISPR 技术进行单碱基编辑,包括特定的脱氨酶和单指导 RNA(sgRNA),是一个快速发展的领域。可以构建不同类型的碱基编辑,胞嘧啶碱基编辑器(CBEs)促进 C 到 T 变体的转换,腺嘌呤碱基编辑器(ABEs)使 A 到 G 变体的转换成为可能,C 到 G 颠换碱基编辑器(CGBEs)和最近的腺嘌呤颠换编辑器(AYBE)可以创建 A 到 C 和 A 到 T 变体。碱基编辑机器学习算法 BE-Hive 预测哪些 sgRNA 和碱基编辑器组合最有可能实现所需的碱基编辑。我们使用 BE-Hive 和来自癌症基因组图谱(TCGA)卵巢癌队列的 TP53 突变数据,预测使用 CBEs、ABEs 或 CGBEs 可以对哪些突变进行工程化,或恢复为野生型(WT)序列。我们开发并自动化了一个排名系统,以协助选择最佳设计的 sgRNA,该系统考虑了合适的前导间隔基序(PAM)的存在、预测的旁观者编辑的频率、编辑效率和目标碱基变化。我们生成了包含 ABE 或 CBE 编辑机制、sgRNA 克隆骨架和增强型绿色荧光蛋白标记(EGFP)的单个构建体,无需共转染多个质粒。我们测试了我们的排名系统和新的质粒构建体,将 p53 突变体 Y220C、R282W 和 R248Q 工程化为 WT p53 细胞,并表明这些突变体不能激活四个 p53 靶基因,模拟内源性 p53 突变的行为。该领域将继续快速发展,需要新的策略,如我们提出的策略,以确保所需的碱基编辑结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验