Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, Japan.
Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, Japan.
SLAS Discov. 2023 Oct;28(7):344-349. doi: 10.1016/j.slasd.2023.06.002. Epub 2023 Jun 25.
The beta-glucocerebrosidase (GBA1) gene encodes the lysosomal beta-glucocerebrosidase (GCase) that metabolizes the lipids glucosylceramide (GlcCer) and glucosylsphingosine (GlcSph). Biallelic loss-of-function mutations in GBA1 such as L444P cause Gaucher disease (GD), which is the most prevalent lysosomal storage disease and is histopathologically characterized by abnormal accumulation of the GCase substrates GlcCer and GlcSph. GD with neurological symptoms is associated with severe mutations in the GBA1 gene, most of which cause impairment in the process of GCase trafficking to lysosomes. Given that recombinant GCase protein cannot cross the blood-brain barrier due to its high molecular weight, it is invaluable to develop a brain-penetrant small-molecule pharmacological chaperone as a viable therapeutic strategy to boost GCase activity in the central nervous system. Despite considerable efforts to screen potent GCase activators/chaperones, cell-free assays using recombinant GCase protein have yielded compounds with only marginal efficacy and micromolar EC that would not have sufficient clinical efficacy or an acceptable safety margin. Therefore, we utilized a fluorescence-labeled GCase suicide inhibitor, MDW933, to directly monitor lysosomal GCase activity and performed a cell-based screening in fibroblasts from a GD patient with homozygotic L444P mutations. Here, we identified novel compounds that increase the fluorescence signal from labeled GCase with L444P mutations in a dose-dependent manner. Secondary assays using an artificial cell-permeable lysosomal GCase substrate also demonstrated that the identified compounds augment lysosomal GCase L444P in the fibroblast. Moreover, those compounds increased the total GCase L444P protein levels, suggesting the pharmacological chaperone-like mechanism of action. To further elucidate the effect of the compounds on the endogenous GCase substrate GlcSph, we generated iPSC-derived dopaminergic neurons with a GBA1 L444P mutation that exhibit GlcSph accumulation in vitro. Importantly, the identified compounds reduce GlcSph in iPSC-derived dopaminergic neurons with a GBA1 L444P mutation, indicating that the increase in lysosomal GCase resulting from application of the compounds leads to the clearance of pathologically-accumulated GlcSph. Together, our findings pave the way for developing potent and efficacious GCase chaperone compounds as a potential therapeutic approach for neurological GD.
β-葡糖苷脑苷脂酶 (GBA1) 基因编码溶酶体β-葡糖苷脑苷脂酶 (GCase),可代谢脂质葡萄糖脑苷脂 (GlcCer) 和葡萄糖鞘氨醇 (GlcSph)。GBA1 的双等位基因失活突变,如 L444P,导致戈谢病 (GD),这是最常见的溶酶体贮积病,其组织病理学特征为 GCase 底物葡萄糖脑苷脂和葡萄糖鞘氨醇异常积累。伴有神经症状的 GD 与 GBA1 基因的严重突变有关,其中大多数导致 GCase 向溶酶体运输过程受损。由于重组 GCase 蛋白由于分子量较大而不能穿过血脑屏障,因此开发一种具有脑穿透能力的小分子药物伴侣作为一种可行的治疗策略来提高中枢神经系统中的 GCase 活性是非常有价值的。尽管人们努力筛选有效的 GCase 激活剂/伴侣,但使用重组 GCase 蛋白的无细胞测定仅产生了效力仅为毫微微摩尔的化合物,这些化合物在临床上没有足够的疗效或可接受的安全范围。因此,我们利用荧光标记的 GCase 自杀抑制剂 MDW933 直接监测具有 L444P 突变的溶酶体 GCase 活性,并在来自具有纯合 L444P 突变的 GD 患者的成纤维细胞中进行基于细胞的筛选。在这里,我们鉴定了新的化合物,这些化合物以剂量依赖性方式增加带有 L444P 突变的标记 GCase 的荧光信号。使用人工细胞可渗透的溶酶体 GCase 底物的二次测定也表明,鉴定的化合物在成纤维细胞中增加了溶酶体 GCase L444P。此外,这些化合物增加了总 GCase L444P 蛋白水平,表明其具有药物伴侣样作用机制。为了进一步阐明化合物对内源性 GCase 底物 GlcSph 的影响,我们生成了具有 GBA1 L444P 突变的 iPSC 衍生的多巴胺能神经元,其在体外表现出 GlcSph 积累。重要的是,鉴定的化合物降低了具有 GBA1 L444P 突变的 iPSC 衍生的多巴胺能神经元中的 GlcSph,表明应用化合物导致的溶酶体 GCase 增加导致病理性积累的 GlcSph 清除。总之,我们的研究结果为开发有效的 GCase 伴侣化合物作为治疗神经 GD 的潜在治疗方法铺平了道路。
1993
Hum Mol Genet. 2024-10-7
Biochim Biophys Acta Mol Cell Biol Lipids. 2025-10
Proc Natl Acad Sci U S A. 2024-10-15
Psychopharmacol Bull. 2024-7-8
Int J Mol Sci. 2025-4-21
Nat Commun. 2025-3-30
Proc Natl Acad Sci U S A. 2024-10-15