Department of Agricultural and Environmental Biotechnology, Faculty of Agricultural and Veterinary Sciences (FCAV), São Paulo State University (UNESP), Jaboticabal 14884-900, SP, Brazil.
Graduate Program in Agricultural and Livestock Microbiology, UNESP, Jaboticabal 14884-900, SP, Brazil.
Int J Mol Sci. 2023 Jun 6;24(12):9785. doi: 10.3390/ijms24129785.
Laccases are multicopper oxidases (MCOs) with a broad application spectrum, particularly in second-generation ethanol biotechnology and the bioremediation of xenobiotics and other highly recalcitrant compounds. Synthetic pesticides are xenobiotics with long environmental persistence, and the search for their effective bioremediation has mobilized the scientific community. Antibiotics, in turn, can pose severe risks for the emergence of multidrug-resistant microorganisms, as their frequent use for medical and veterinary purposes can generate constant selective pressure on the microbiota of urban and agricultural effluents. In the search for more efficient industrial processes, some bacterial laccases stand out for their tolerance to extreme physicochemical conditions and their fast generation cycles. Accordingly, to expand the range of effective approaches for the bioremediation of environmentally important compounds, the prospection of bacterial laccases was carried out from a custom genomic database. The best hit found in the genome of sp. CB10, a Bacteroidetes isolate obtained from a biomass-degrading bacterial consortium, was subjected to in silico prediction, molecular docking, and molecular dynamics simulation analyses. The putative laccase CB10_180.4889 (Lac_CB10), composed of 728 amino acids, with theoretical molecular mass values of approximately 84 kDa and a pI of 6.51, was predicted to be a new CopA with three cupredoxin domains and four conserved motifs linking MCOs to copper sites that assist in catalytic reactions. Molecular docking studies revealed that Lac_CB10 had a high affinity for the molecules evaluated, and the affinity profiles with multiple catalytic pockets predicted the following order of decreasing thermodynamically favorable values: tetracycline (-8 kcal/mol) > ABTS (-6.9 kcal/mol) > sulfisoxazole (-6.7 kcal/mol) > benzidine (-6.4 kcal/mol) > trimethoprim (-6.1 kcal/mol) > 2,4-dichlorophenol (-5.9 kcal/mol) mol. Finally, the molecular dynamics analysis suggests that Lac_CB10 is more likely to be effective against sulfisoxazole-like compounds, as the sulfisoxazole-Lac_CB10 complex exhibited RMSD values lower than 0.2 nm, and sulfisoxazole remained bound to the binding site for the entire 100 ns evaluation period. These findings corroborate that LacCB10 has a high potential for the bioremediation of this molecule.
漆酶是一类多铜氧化酶(MCOs),具有广泛的应用谱,特别是在第二代乙醇生物技术和异生物质及其他高度难降解化合物的生物修复中。合成农药是异生物质,具有长期的环境持久性,因此寻找有效的生物修复方法引起了科学界的关注。另一方面,抗生素会对多药耐药微生物的出现构成严重威胁,因为它们在医学和兽医用途中的频繁使用会对城市和农业废水的微生物区系产生持续的选择性压力。为了寻求更有效的工业工艺,一些细菌漆酶因其对极端物理化学条件的耐受性和快速的代际周期而脱颖而出。因此,为了扩大对环境重要化合物进行生物修复的有效方法范围,从定制基因组数据库中对细菌漆酶进行了勘探。在从生物量降解细菌联合体中获得的拟杆菌门分离株 sp. CB10 的基因组中发现的最佳命中物,经过了计算机预测、分子对接和分子动力学模拟分析。预测的漆酶 CB10_180.4889(Lac_CB10)由 728 个氨基酸组成,理论分子量约为 84 kDa,等电点为 6.51,是一种新的 CopA,具有三个铜蛋白结构域和四个将 MCOs 与铜位点连接起来的保守基序,这些基序有助于催化反应。分子对接研究表明,Lac_CB10 与评估的分子具有很高的亲和力,并且具有多个催化口袋的亲和力图谱预测了以下热力学有利值的递减顺序:四环素(-8 kcal/mol)>ABTS(-6.9 kcal/mol)>磺胺异恶唑(-6.7 kcal/mol)>联苯(-6.4 kcal/mol)>甲氧苄啶(-6.1 kcal/mol)>2,4-二氯苯酚(-5.9 kcal/mol)。最后,分子动力学分析表明,Lac_CB10 更有可能对抗磺胺异恶唑样化合物有效,因为磺胺异恶唑-Lac_CB10 复合物的 RMSD 值低于 0.2nm,并且磺胺异恶唑在整个 100ns 评估期间仍保持与结合位点结合。这些发现证实了 Lac_CB10 对该分子的生物修复具有很高的潜力。