Department of Equine Sciences, Utrecht University, Utrecht, The Netherlands.
Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.
Equine Vet J. 2024 May;56(3):573-585. doi: 10.1111/evj.13960. Epub 2023 Jun 27.
Strategies for articular cartilage repair need to take into account topographical differences in tissue composition and architecture to achieve durable functional outcome. These have not yet been investigated in the equine stifle.
To analyse the biochemical composition and architecture of three differently loaded areas of the equine stifle. We hypothesise that site differences correlate with the biomechanical characteristics of the cartilage.
Ex vivo study.
Thirty osteochondral plugs per location were harvested from the lateral trochlear ridge (LTR), the distal intertrochlear groove (DITG) and the medial femoral condyle (MFC). These underwent biochemical, biomechanical and structural analysis. A linear mixed model with location as a fixed factor and horse as a random factor was applied, followed by pair-wise comparisons of estimated means with false discovery rate correction, to test for differences between locations. Correlations between biochemical and biomechanical parameters were tested using Spearman's correlation coefficient.
Glycosaminoglycan content was different between all sites (estimated mean [95% confidence interval (CI)] for LTR 75.4 [64.5, 88.2], for intercondylar notch (ICN) 37.3 [31.9, 43.6], for MFC 93.7 [80.1109.6] μg/mg dry weight), as were equilibrium modulus (LTR2.20 [1.96, 2.46], ICN0.48 [0.37, 0.6], MFC1.36 [1.17, 1.56] MPa), dynamic modulus (LTR7.33 [6.54, 8.17], ICN4.38 [3.77, 5.03], MFC5.62 [4.93, 6.36] MPa) and viscosity (LTR7.49 [6.76, 8.26], ICN16.99 [15.88, 18.14], MFC8.7 [7.91,9.5]°). The two weightbearing areas (LTR and MCF) and the non-weightbearing area (ICN) differed in collagen content (LTR 139 [127, 152], ICN176[162, 191], MFC 127[115, 139] μg/mg dry weight), parallelism index and angle of collagen fibres. The strongest correlations were between proteoglycan content and equilibrium modulus (r: 0.642; p: 0.001), dynamic modulus (r: 0.554; p < 0.001) and phase shift (r: -0.675; p < 0.001), and between collagen orientation angle and equilibrium modulus (r: -0.612; p < 0.001), dynamic modulus (r: -0.424; p < 0.001) and phase shift (r: 0.609; p < 0.001).
Only a single sample per location was analysed.
There were significant differences in cartilage biochemical composition, biomechanics and architecture between the three differently loaded sites. The biochemical and structural composition correlated with the mechanical characteristics. These differences need to be acknowledged by designing cartilage repair strategies.
关节软骨修复策略需要考虑组织组成和结构的地形差异,以实现持久的功能结果。这些在马的膝关节中尚未得到研究。
分析马膝关节三个不同负载区域的生化组成和结构。我们假设部位差异与软骨的生物力学特性相关。
离体研究。
每个位置采集 30 个骨软骨栓,分别来自外侧滑车嵴(LTR)、远端滑车沟(DITG)和内侧股骨髁(MFC)。这些进行了生化、生物力学和结构分析。应用具有位置为固定因子和马为随机因子的线性混合模型,然后进行估计均值的两两比较,并进行虚假发现率校正,以测试部位之间的差异。使用 Spearman 相关系数测试生化和生物力学参数之间的相关性。
所有部位的糖胺聚糖含量均不同(LTR 的估计平均值[95%置信区间(CI)]为 75.4[64.5,88.2],ICN 为 37.3[31.9,43.6],MFC 为 93.7[80.1,109.6]μg/mg 干重),平衡模量(LTR2.20[1.96,2.46],ICN0.48[0.37,0.6],MFC1.36[1.17,1.56]MPa)、动态模量(LTR7.33[6.54,8.17],ICN4.38[3.77,5.03],MFC5.62[4.93,6.36]MPa)和粘度(LTR7.49[6.76,8.26],ICN16.99[15.88,18.14],MFC8.7[7.91,9.5]°)也不同。两个承重区(LTR 和 MCF)和非承重区(ICN)的胶原含量不同(LTR 139[127,152],ICN176[162,191],MFC 127[115,139]μg/mg 干重)、平行度指数和胶原纤维角度。相关性最强的是蛋白聚糖含量与平衡模量(r:0.642;p:0.001)、动态模量(r:0.554;p<0.001)和相位差(r:-0.675;p<0.001),以及胶原取向角与平衡模量(r:-0.612;p<0.001)、动态模量(r:-0.424;p<0.001)和相位差(r:0.609;p<0.001)。
每个部位仅分析了一个样本。
三个不同负载部位的软骨生化组成、生物力学和结构存在显著差异。生化和结构组成与机械特性相关。在设计软骨修复策略时需要考虑这些差异。