Suppr超能文献

基于海洋来源多糖的自支撑多层膜作为用于控制药物释放的可持续纳米储库。

Marine-origin polysaccharides-based free-standing multilayered membranes as sustainable nanoreservoirs for controlled drug delivery.

机构信息

CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.

出版信息

J Mater Chem B. 2023 Jul 19;11(28):6671-6684. doi: 10.1039/d3tb00796k.

Abstract

The layer-by-layer (LbL) assembly technology has been widely used to functionalise surfaces and precisely engineer robust multilayered bioarchitectures with tunable structures, compositions, properties, and functions at the nanoscale by resorting to a myriad of building blocks exhibiting complementary interactions. Among them, marine-origin polysaccharides are a sustainable renewable resource for the fabrication of nanostructured biomaterials for biomedical applications owing to their wide bioavailability, biocompatibility, biodegradability, non-cytotoxicity, and non-immunogenic properties. Chitosan (CHT) and alginate (ALG) have been widely employed as LbL ingredients to shape a wide repertoire of size- and shape-tunable electrostatic-driven multilayered assemblies by exploring their opposite charge nature. However, the insolubility of CHT in physiological conditions intrinsically limits the range of bioapplications of the as-developed CHT-based LbL structures. Herein, we report the preparation of free-standing (FS) multilayered membranes made of water-soluble quaternised CHT and ALG biopolymers for controlled release of model drug molecules. The influence of the film structure in the drug release rate is studied by assembling two distinct set-ups of FS membranes, having the model hydrophilic drug fluorescein isothiocyanate-labelled bovine serum albumin (FITC-BSA) either as an intrinsic building block or added as an outer layer after the LbL assembly process. Both FS membranes are characterised for their thickness, morphology, cytocompatibility, and release profile, with those having FITC-BSA as an intrinsic LbL ingredient denoting a more sustained release rate. This work opens up new avenues for the design and development of a wide array of CHT-based devices for biomedical applications, overcoming the limitations associated with the insolubility of native CHT under physiological conditions.

摘要

层层组装技术已被广泛用于功能化表面,并通过使用表现出互补相互作用的多种构建块,精确地设计具有可调结构、组成、性质和功能的稳健多层生物结构。其中,海洋来源多糖是制造用于生物医学应用的纳米结构生物材料的可持续可再生资源,因为它们具有广泛的生物利用度、生物相容性、可生物降解性、非细胞毒性和非免疫原性。壳聚糖(CHT)和藻酸盐(ALG)已被广泛用作 LbL 成分,通过探索其相反的电荷性质,形成广泛的尺寸和形状可调的静电驱动多层组装体。然而,CHT 在生理条件下的不溶性本质上限制了所开发的基于 CHT 的 LbL 结构的生物应用范围。在此,我们报告了由水溶性季铵化 CHT 和 ALG 生物聚合物组成的独立多层膜的制备,用于模型药物分子的控制释放。通过组装具有模型亲水性药物异硫氰酸荧光素标记牛血清白蛋白(FITC-BSA)的两种不同的 FS 膜的设置,研究了膜结构对药物释放速率的影响,FITC-BSA 既可以作为内在的构建块,也可以在 LbL 组装过程后作为外层添加。对 FS 膜的厚度、形态、细胞相容性和释放特性进行了表征,具有 FITC-BSA 作为内在 LbL 成分的 FS 膜表示出更持续的释放速率。这项工作为设计和开发用于生物医学应用的广泛的 CHT 基装置开辟了新的途径,克服了在生理条件下天然 CHT 不溶的局限性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验