Al-Amshawee Sajjad Khudhur Abbas, Yunus Mohd Yusri Bin Mohd, Mohamed Hybat Salih
Centre for Sustainability of Ecosystem & Earth Resources (Earth Centre), Universiti Malaysia Pahang, 26300, Pahang, Malaysia.
Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, 26300, Pahang, Malaysia.
Environ Sci Pollut Res Int. 2025 May;32(22):13037-13052. doi: 10.1007/s11356-023-28433-9. Epub 2023 Jun 28.
Electrodialysis desalination is constructed with a number of anion exchange membranes (AEM), cation exchange membranes (CEM), anode, cathode, adjacent silicon gasket integrated membrane spacers, and inlet/outlet holes per cell. At the boundary among an ionic solution and an ion exchange membrane, concentration polarization develops. Spacers placed in between channel's walls function as stream baffles to increase turbulence, improve heat and mass transfer, diminish the laminar boundary layer, and lessen fouling problems. The current study offers a systematic review of membrane spacers, spacer-bulk attack angles, and irregular attack angles. Spacer-bulk attack angle is accountable for variations in the pattern and direction of stream which impact heat-mass transfer and concentration polarization. Irregular attack angles (e.g., 0°, 15°, 30°, 37°, 45°, 55°, 60°, 62°, 70°, 74°, 80°, 90°, 110°, 120°) in the present study were found to provide unique stream patterns due to the spacer's filaments being less or more transverse in respect to the primary solution direction, which may significantly alter heat transfer, mass transport, pressure drop, and overall flow dynamics. Spacer applies shear stress resulting by continuous stream tangent to the membrane exterior, which lessens polarization. In the end, 45° is concluded as the preferred attack angle that offers balanced rates of heat transfer, mass transport, and pressure drop throughout the feed channel while greatly lowering the rate of concentration polarization.
电渗析脱盐装置由多个阴离子交换膜(AEM)、阳离子交换膜(CEM)、阳极、阴极、相邻的带有硅垫圈的一体式膜间隔物以及每个单元的进/出口孔构成。在离子溶液和离子交换膜的边界处,会发生浓差极化。置于通道壁之间的间隔物起到了扰流板的作用,以增加湍流、改善传热和传质、减小层流边界层并减轻污垢问题。当前的研究对膜间隔物、间隔物-主体攻角和不规则攻角进行了系统综述。间隔物-主体攻角决定了水流的模式和方向变化,这会影响传热传质和浓差极化。在本研究中发现,不规则攻角(例如0°、15°、30°、37°、45°、55°、60°、62°、70°、74°、80°、90°、110°、120°)会由于间隔物的细丝相对于主流溶液方向或多或少呈横向排列而提供独特的水流模式,这可能会显著改变传热、传质、压降和整体流动动力学。间隔物会施加由与膜外部相切的连续水流产生的剪切应力,从而减轻极化。最后得出结论,45°是首选的攻角,它在进料通道中能提供平衡的传热、传质和压降速率,同时大幅降低浓差极化速率。