Suppr超能文献

揭示 DNA 甲基转移酶的新变体导致羧基腺苷甲硫氨酸使用的驱动因素。

Revealing Drivers for Carboxy--adenosyl-l-methionine Use by Neomorphic Variants of a DNA Methyltransferase.

机构信息

Graduate Group in Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.

Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States.

出版信息

ACS Chem Biol. 2023 Oct 20;18(10):2224-2232. doi: 10.1021/acschembio.3c00184. Epub 2023 Jun 28.

Abstract

Methylation of DNA plays a key role in diverse biological processes spanning from bacteria to mammals. DNA methyltransferases (MTases) typically employ -adenosyl-l-methionine (SAM) as a critical cosubstrate and the relevant methyl donor for modification of the C5 position of cytosine. Recently, work on the CpG-specific bacterial MTase, M.MpeI, has shown that a single N374K point mutation can confer the enzyme with the neomorphic ability to use the sparse, naturally occurring metabolite carboxy--adenosyl-l-methionine (CxSAM) in order to generate the unnatural DNA modification, 5-carboxymethylcytosine (5cxmC). Here, we aimed to investigate the mechanistic basis for this DNA carboxymethyltransferase (CxMTase) activity by employing a combination of computational modeling and characterization. Modeling of substrate interactions with the enzyme variant allowed us to identify a favorable salt bridge between CxSAM and N374K that helps to rationalize selectivity of the CxMTase. Unexpectedly, we also discovered a potential role for a key active site E45 residue that makes a bidentate interaction with the ribosyl sugar of CxSAM, located on the opposite face of the CxMTase active site. Prompted by these modeling results, we further explored the space-opening E45D mutation and found that the E45D/N374K double mutant in fact inverts selectivity, preferring CxSAM over SAM in biochemical assays. These findings provide new insight into CxMTase active site architecture and may offer broader utility given the numerous opportunities offered by using SAM analogs for selective molecular labeling in concert with nucleic acid or even protein-modifying MTases.

摘要

DNA 的甲基化在从细菌到哺乳动物的各种生物过程中起着关键作用。DNA 甲基转移酶 (MTases) 通常采用 -腺苷甲硫氨酸 (SAM) 作为关键辅助因子,以及相关的甲基供体,用于修饰胞嘧啶的 C5 位置。最近,对 CpG 特异性细菌 MTase M.MpeI 的研究表明,单个 N374K 点突变可以赋予该酶新的功能,使其能够利用稀有的天然代谢产物羧基--腺苷甲硫氨酸 (CxSAM) 来产生非天然的 DNA 修饰物 5-羧甲基胞嘧啶 (5cxmC)。在这里,我们旨在通过结合计算建模和表征来研究这种 DNA 羧甲基转移酶 (CxMTase) 活性的机制基础。对酶变体与底物相互作用的建模使我们能够确定 CxSAM 与 N374K 之间有利的盐桥,这有助于合理解释 CxMTase 的选择性。出乎意料的是,我们还发现了关键活性位点 E45 残基的潜在作用,它与 CxSAM 的核糖糖形成双配位键,位于 CxMTase 活性位点的对面。受这些建模结果的启发,我们进一步探索了空间开放的 E45D 突变,并发现 E45D/N374K 双突变体实际上反转了选择性,在生化测定中优先选择 CxSAM 而不是 SAM。这些发现为 CxMTase 活性位点结构提供了新的见解,并可能提供更广泛的用途,因为使用 SAM 类似物与核酸甚至蛋白质修饰 MTase 一起进行选择性分子标记提供了众多机会。

相似文献

1
Revealing Drivers for Carboxy--adenosyl-l-methionine Use by Neomorphic Variants of a DNA Methyltransferase.
ACS Chem Biol. 2023 Oct 20;18(10):2224-2232. doi: 10.1021/acschembio.3c00184. Epub 2023 Jun 28.
2
Discovery of an Unnatural DNA Modification Derived from a Natural Secondary Metabolite.
Cell Chem Biol. 2021 Jan 21;28(1):97-104.e4. doi: 10.1016/j.chembiol.2020.09.006. Epub 2020 Oct 13.
3
DNA methyltransferases: mechanistic models derived from kinetic analysis.
Crit Rev Biochem Mol Biol. 2012 Mar-Apr;47(2):97-193. doi: 10.3109/10409238.2011.620942. Epub 2012 Jan 20.
4
[Analogs of S-Adenosyl-L-Methionine in Studies of Methyltransferases].
Mol Biol (Mosk). 2022 Mar-Apr;56(2):296-319. doi: 10.31857/S0026898422020148.
5
DNA Labeling Using DNA Methyltransferases.
Adv Exp Med Biol. 2022;1389:535-562. doi: 10.1007/978-3-031-11454-0_19.
6
Insights into S-adenosyl-l-methionine (SAM)-dependent methyltransferase related diseases and genetic polymorphisms.
Mutat Res Rev Mutat Res. 2021 Jul-Dec;788:108396. doi: 10.1016/j.mrrev.2021.108396. Epub 2021 Oct 7.
7
Structure and function of DNA methyltransferases.
Annu Rev Biophys Biomol Struct. 1995;24:293-318. doi: 10.1146/annurev.bb.24.060195.001453.
10
DNA Labeling Using DNA Methyltransferases.
Adv Exp Med Biol. 2016;945:511-535. doi: 10.1007/978-3-319-43624-1_19.

引用本文的文献

1
Direct single-nucleotide resolution sequencing of DNA 5-methylcytosine using engineered DNA methyltransferase-mediated CMD-seq.
Chem Sci. 2025 Apr 16;16(20):8788-8799. doi: 10.1039/d5sc01211b. eCollection 2025 May 21.

本文引用的文献

1
Direct enzymatic sequencing of 5-methylcytosine at single-base resolution.
Nat Chem Biol. 2023 Aug;19(8):1004-1012. doi: 10.1038/s41589-023-01318-1. Epub 2023 Jun 15.
2
Enzymology of Mammalian DNA Methyltransferases.
Adv Exp Med Biol. 2022;1389:69-110. doi: 10.1007/978-3-031-11454-0_4.
4
Computational compensatory mutation discovery approach: Predicting a PARP1 variant rescue mutation.
Biophys J. 2022 Oct 4;121(19):3663-3673. doi: 10.1016/j.bpj.2022.05.036. Epub 2022 May 30.
5
Analogs of -Adenosyl--Methionine in Studies of Methyltransferases.
Mol Biol. 2022;56(2):229-250. doi: 10.1134/S002689332202011X. Epub 2022 Apr 14.
6
Enzymatic approaches for profiling cytosine methylation and hydroxymethylation.
Mol Metab. 2022 Mar;57:101314. doi: 10.1016/j.molmet.2021.101314. Epub 2021 Aug 8.
7
Discovery of an Unnatural DNA Modification Derived from a Natural Secondary Metabolite.
Cell Chem Biol. 2021 Jan 21;28(1):97-104.e4. doi: 10.1016/j.chembiol.2020.09.006. Epub 2020 Oct 13.
8
Deciphering bacterial epigenomes using modern sequencing technologies.
Nat Rev Genet. 2019 Mar;20(3):157-172. doi: 10.1038/s41576-018-0081-3.
9
Rossmann-Fold Methyltransferases: Taking a "β-Turn" around Their Cofactor, S-Adenosylmethionine.
Biochemistry. 2019 Jan 22;58(3):166-170. doi: 10.1021/acs.biochem.8b00994. Epub 2018 Nov 15.
10
Pan-Cancer Landscape of Aberrant DNA Methylation across Human Tumors.
Cell Rep. 2018 Oct 23;25(4):1066-1080.e8. doi: 10.1016/j.celrep.2018.09.082.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验