Güntner C, Holler E
Biochemistry. 1979 May 15;18(10):2028-38. doi: 10.1021/bi00577a029.
The interaction between Phe-tRNA(Phe) or other acyl-tRNA derivatives thereof and phenylalanyl-tRNA synthetase of Escherichia coli K 10 has been investigated by nonequilibrium dialysis, by fluorescence titration in the presence of 2-p-toluidinylnaphthalene-6-sulfonate, by the kinetics of the aminoacylation of tRNA(Phe), and by the kinetics of the catalytic hydrolysis of Phe-tRNA(Phe). Phe-tRNA(Phe), or derivatives thereof, forms two types of complexes with the synthetase. One type involves the attachment of the phenylalanyl moiety to the phenylalanine-specific site of the enzyme, and the other type, to the tRNA(Phe)-specific binding site. They resemble alternative modes of a destabilized enzyme-product complex and are predicted on the basis of thermodynamic considerations. The two modes of binding of acyl-tRNA compete with each other. The attachment of Phe-tRNA(Phe) to the phenylalanine-specific site dominates. At equilibrium, this complex is present at a fourfold higher concentration than the other type of complex. The HNO2 deaminated Phe-tRNA(Phe) binds exclusively to the site specific for L-phenylalanine. On the contrary, Ile-tRNA(Phe) adds at 94.1% to the tRNA(Phe)-specific site. The association of Phe-tRNA(Phe) with this site leads to enzymatic hydrolysis into L-phenylalanine and tRNA(Phe). The complex involving the phenylalanine-specific site is hydrolytically unproductive. L-Phenylalanine acts as an activator of the hydrolysis by occupying the amino acid specific site and by shifting the equilibrium between the complexes toward the binding ot Phe-tRNA(Phe) at the tRNA(Phe)-specific site. The association of Phe-tRNA(Phe) at the phenylalanine-specific site does not interfere sterically with the binding of free tRNA(Phe). The sequential addition of free and aminoacylated tRNA(Phe) exhibits negative cooperativity. Such a mechanism could help to expel the product from the enzyme.
通过非平衡透析、在2-对甲苯胺基萘-6-磺酸盐存在下的荧光滴定、苯丙氨酰tRNA(Phe)的氨酰化动力学以及苯丙氨酰tRNA(Phe)的催化水解动力学,研究了苯丙氨酰tRNA(Phe)或其其他酰基tRNA衍生物与大肠杆菌K10的苯丙氨酰tRNA合成酶之间的相互作用。苯丙氨酰tRNA(Phe)或其衍生物与合成酶形成两种类型的复合物。一种类型涉及苯丙氨酰部分与酶的苯丙氨酸特异性位点的结合,另一种类型则与tRNA(Phe)特异性结合位点结合。它们类似于不稳定的酶-产物复合物的交替模式,并基于热力学考虑进行预测。酰基tRNA的两种结合模式相互竞争。苯丙氨酰tRNA(Phe)与苯丙氨酸特异性位点的结合占主导。在平衡时,这种复合物的浓度比另一种类型的复合物高四倍。亚硝酸脱氨基的苯丙氨酰tRNA(Phe)仅与L-苯丙氨酸特异性位点结合。相反,异亮氨酰tRNA(Phe)有94.1%添加到tRNA(Phe)特异性位点。苯丙氨酰tRNA(Phe)与该位点的结合导致酶促水解为L-苯丙氨酸和tRNA(Phe)。涉及苯丙氨酸特异性位点的复合物在水解方面没有活性。L-苯丙氨酸通过占据氨基酸特异性位点并将复合物之间的平衡向苯丙氨酰tRNA(Phe)在tRNA(Phe)特异性位点的结合方向移动,从而作为水解的激活剂。苯丙氨酰tRNA(Phe)在苯丙氨酸特异性位点的结合在空间上不干扰游离tRNA(Phe)的结合。游离和氨酰化tRNA(Phe)的顺序添加表现出负协同性。这样一种机制可能有助于将产物从酶中排出。