Suppr超能文献

多延迟动脉自旋标记的脑灌注成像:建模分散的影响以及与去噪策略和病理学的相互作用。

Brain perfusion imaging by multi-delay arterial spin labeling: Impact of modeling dispersion and interaction with denoising strategies and pathology.

机构信息

Department of Bioengineering, Institute for Systems and Robotics - Lisboa, Instituto Superior Técnico - Universidade de Lisboa, Lisbon, Portugal.

Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, UK.

出版信息

Magn Reson Med. 2023 Nov;90(5):1889-1904. doi: 10.1002/mrm.29783. Epub 2023 Jun 29.

Abstract

PURPOSE

Arterial spin labeling (ASL) acquisitions at multiple post-labeling delays may provide more accurate quantification of cerebral blood flow (CBF), by fitting appropriate kinetic models and simultaneously estimating relevant parameters such as the arterial transit time (ATT) and arterial cerebral blood volume (aCBV). We evaluate the effects of denoising strategies on model fitting and parameter estimation when accounting for the dispersion of the label bolus through the vasculature in cerebrovascular disease.

METHODS

We analyzed multi-delay ASL data from 17 cerebral small vessel disease patients (50 ± 9 y) and 13 healthy controls (52 ± 8 y), by fitting an extended kinetic model with or without bolus dispersion. We considered two denoising strategies: removal of structured noise sources by independent component analysis (ICA) of the control-label image timeseries; and averaging the repetitions of the control-label images prior to model fitting.

RESULTS

Modeling bolus dispersion improved estimation precision and impacted parameter values, but these effects strongly depended on whether repetitions were averaged before model fitting. In general, repetition averaging improved model fitting but adversely affected parameter values, particularly CBF and aCBV near arterial locations in patients. This suggests that using all repetitions allows better noise estimation at the earlier delays. In contrast, ICA denoising improved model fitting and estimation precision while leaving parameter values unaffected.

CONCLUSION

Our results support the use of ICA denoising to improve model fitting to multi-delay ASL and suggest that using all control-label repetitions improves the estimation of macrovascular signal contributions and hence perfusion quantification near arterial locations. This is important when modeling flow dispersion in cerebrovascular pathology.

摘要

目的

动脉自旋标记(ASL)在多个标记后延迟采集可以通过拟合适当的动力学模型并同时估计相关参数,如动脉渡越时间(ATT)和动脉脑血容量(aCBV),从而更准确地定量脑血流(CBF)。当考虑到标签脉冲在脑血管病中的血管内弥散时,我们评估了在拟合模型和参数估计时,不同去噪策略的效果。

方法

我们对 17 例脑小血管病患者(50±9 岁)和 13 例健康对照者(52±8 岁)的多延迟 ASL 数据进行了分析,通过拟合带有或不带有脉冲弥散的扩展动力学模型。我们考虑了两种去噪策略:通过控制-标记图像时间序列的独立成分分析(ICA)去除结构噪声源;以及在模型拟合之前,对控制-标记图像的重复进行平均。

结果

对脉冲弥散进行建模可以提高估计精度并影响参数值,但这些效果强烈依赖于在模型拟合之前是否对重复进行平均。一般来说,重复平均可以改善模型拟合,但会对参数值产生不利影响,特别是在患者的动脉附近的 CBF 和 aCBV。这表明,使用所有重复可以在较早的延迟处更好地估计噪声。相比之下,ICA 去噪可以改善模型拟合和估计精度,而不影响参数值。

结论

我们的结果支持使用 ICA 去噪来改善多延迟 ASL 的模型拟合,并表明使用所有控制-标记重复可以改善动脉附近的大血管信号贡献的估计,从而改善灌注定量。这在对脑血管病中的血流弥散进行建模时非常重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验