Suppr超能文献

利用自吸收校正高光谱层析重建方法对冷冻水合样品中的轻元素进行单切片 XRF 映射。

Single-Slice XRF Mapping of Light Elements in Frozen-Hydrated via a Self-Absorption-Corrected Hyperspectral Tomographic Reconstruction Approach.

机构信息

Analytical Chemistry - Biointerfaces, Ruhr University Bochum, Universitätsstr. 150NC4, 44780 Bochum, Germany.

Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany.

出版信息

Anal Chem. 2023 Jul 11;95(27):10186-10195. doi: 10.1021/acs.analchem.3c00188. Epub 2023 Jun 29.

Abstract

3D and 2D-cross-sectional X-ray fluorescence analysis of biological material is a powerful tool to image the distribution of elements and to understand and quantify metal homeostasis and the distribution of anthropogenic metals and nanoparticles with minimal preparation artifacts. Using tomograms recorded on cryogenically prepared leaves of , the cross-sectional distribution of physiologically relevant elements like calcium, potassium, manganese, and zinc could be tomographically reconstructed by peak fitting followed by a conventional maximum-likelihood algorithm with self-absorption correction to reveal the quantitative cross-sectional element distribution. If light elements such as S and P are located deep in the sample compared to the escape depth of their characteristic X-ray fluorescence lines, the quantitative reconstruction becomes inaccurate. As a consequence, noise is amplified to a magnitude where it might be misinterpreted as actual concentration. We show that a tomographic MCA hyperspectral reconstruction in combination with a self-absorption correction allows for fitting of the XRF spectra directly in real space, which significantly improves the qualitative and quantitative analysis of the light elements compared to the conventional method as noise and artifacts in the tomographic reconstruction are reduced. This reconstruction approach can substantially improve the quantitative analysis of trace elements as it allows the fitting of summed voxel spectra in anatomical regions of interest. The presented method can be applied to XRF 2D single-slice tomography data and 3D tomograms and is particularly relevant for, but not limited to, biological material in order to help retrieve self-absorption corrected quantitative reconstructions of the spatial distribution of light elements and ultra-trace-elements.

摘要

生物材料的 3D 和 2D 截面 X 射线荧光分析是一种强大的工具,可用于成像元素分布,以及理解和量化金属动态平衡和人为金属及纳米颗粒的分布,同时最小化制备伪影。使用低温制备的叶片记录的断层图像,可以通过峰拟合对生理相关元素(如钙、钾、锰和锌)的截面分布进行断层重建,然后通过传统的最大似然算法进行自吸收校正,以揭示定量截面元素分布。如果像 S 和 P 这样的轻元素与它们特征 X 射线荧光线的逃逸深度相比位于样品的深处,则定量重建变得不准确。因此,噪声被放大到可能被误解为实际浓度的程度。我们表明,与传统方法相比,结合自吸收校正的断层 MCA 高光谱重建允许直接在真实空间中拟合 XRF 光谱,这显著改善了轻元素的定性和定量分析,因为断层重建中的噪声和伪影减少了。这种重建方法可以大大提高微量元素的定量分析,因为它允许拟合感兴趣的解剖区域中所有体素光谱。所提出的方法可应用于 XRF 2D 单切片断层扫描数据和 3D 断层图像,特别适用于生物材料,但不仅限于生物材料,以帮助获取轻元素和超痕量元素空间分布的自吸收校正定量重建。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验