Department of Neurology (Y.C., Y.W., C.-L.P., S.F., M.M.B., H.A., J.-M.L., A.L.F.), Washington University School of Medicine, St. Louis, MO.
Division of Pediatric Hematology/Oncology (M.E.F.), Washington University School of Medicine, St. Louis, MO.
Stroke. 2023 Aug;54(8):2096-2104. doi: 10.1161/STROKEAHA.123.042683. Epub 2023 Jun 30.
Silent cerebral infarcts (SCI) in sickle cell anemia (SCA) are associated with future strokes and cognitive impairment, warranting early diagnosis and treatment. Detection of SCI, however, is limited by their small size, especially when neuroradiologists are unavailable. We hypothesized that deep learning may permit automated SCI detection in children and young adults with SCA as a tool to identify the presence and extent of SCI in clinical and research settings.
We utilized UNet-a deep learning model-for fully automated SCI segmentation. We trained and optimized UNet using brain magnetic resonance imaging from the SIT trial (Silent Infarct Transfusion). Neuroradiologists provided the ground truth for SCI diagnosis, while a vascular neurologist manually delineated SCI on fluid-attenuated inversion recovery and provided the ground truth for SCI segmentation. UNet was optimized for the highest spatial overlap between automatic and manual delineation (dice similarity coefficient). The optimized UNet was externally validated using an independent single-center prospective cohort of SCA participants. Model performance was evaluated through sensitivity and accuracy (%correct cases) for SCI diagnosis, dice similarity coefficient, intraclass correlation coefficient (metric of volumetric agreement), and Spearman correlation.
The SIT trial (n=926; 31% with SCI; median age, 8.9 years) and external validation (n=80; 50% with SCI; age, 11.5 years) cohorts had small median lesion volumes of 0.40 and 0.25 mL, respectively. Compared with the neuroradiology diagnosis, UNet predicted SCI presence with 100% sensitivity and 74% accuracy. In magnetic resonance imaging with SCI, UNet reached a moderate spatial agreement (dice similarity coefficient, 0.48) and high volumetric agreement (intraclass correlation coefficient, 0.76; ρ=0.72; <0.001) between automatic and manual segmentations.
UNet, trained using a large pediatric SCA magnetic resonance imaging data set, sensitively detected small SCI in children and young adults with SCA. While additional training is needed, UNet may be integrated into the clinical workflow as a screening tool, aiding in SCI diagnosis.
镰状细胞贫血(SCA)患者的无症状性脑梗死(SCI)与未来的中风和认知障碍有关,因此需要早期诊断和治疗。然而,由于 SCI 体积较小,尤其是在神经放射科医生无法进行检查时,其检测受到限制。我们假设深度学习可以通过自动检测 SCA 儿童和年轻成人中的 SCI,作为在临床和研究环境中识别 SCI 存在和程度的工具。
我们使用 UNet-a 深度学习模型来进行全自动 SCI 分割。我们使用 SIT 试验(Silent Infarct Transfusion)的脑磁共振成像来训练和优化 UNet。神经放射科医生提供 SCI 诊断的真实数据,而血管神经病学家则在液体衰减反转恢复图像上手动勾画 SCI,并提供 SCI 分割的真实数据。UNet 经过优化,以实现自动和手动勾画之间的最高空间重叠(Dice 相似系数)。使用来自独立的单中心前瞻性 SCA 参与者队列的外部验证数据集来优化 UNet。通过 SCI 诊断的敏感性和准确性(正确病例的百分比)、Dice 相似系数、组内相关系数(体积一致性的度量)和 Spearman 相关系数来评估模型性能。
SIT 试验(n=926;31%有 SCI;中位年龄 8.9 岁)和外部验证(n=80;50%有 SCI;年龄 11.5 岁)队列的中位数病变体积较小,分别为 0.40 和 0.25 mL。与神经放射学诊断相比,UNet 对 SCI 存在的预测具有 100%的敏感性和 74%的准确性。在有 SCI 的磁共振成像中,UNet 达到了中等的空间一致性(Dice 相似系数为 0.48)和较高的体积一致性(组内相关系数为 0.76;ρ=0.72;<0.001)。
使用大型儿科 SCA 磁共振成像数据集训练的 UNet 可以灵敏地检测出 SCA 儿童和年轻成人中的小 SCI。虽然需要进一步培训,但 UNet 可以作为一种筛查工具集成到临床工作流程中,辅助 SCI 诊断。