Suppr超能文献

水凝胶的相分离被阻止,同时实现高强度和低滞后。

Hydrogels of arrested phase separation simultaneously achieve high strength and low hysteresis.

机构信息

John A. Paulson School of Engineering and Applied Science, Harvard University, Cambridge, MA 02138, USA.

出版信息

Sci Adv. 2023 Jun 30;9(26):eadh7742. doi: 10.1126/sciadv.adh7742.

Abstract

Hydrogels are being developed to bear loads. Applications include artificial tendons and muscles, which require high strength to bear loads and low hysteresis to reduce energy loss. However, simultaneously achieving high strength and low hysteresis has been challenging. This challenge is met here by synthesizing hydrogels of arrested phase separation. Such a hydrogel has interpenetrating hydrophilic and hydrophobic networks, which separate into a water-rich phase and a water-poor phase. The two phases arrest at the microscale. The soft hydrophilic phase deconcentrates stress in the strong hydrophobic phase, leading to high strength. The two phases are elastic and adhere through topological entanglements, leading to low hysteresis. For example, a hydrogel of 76 weight % water, made of poly(ethyl acrylate) and poly(acrylic acid), achieves a tensile strength of 6.9 megapascals and a hysteresis of 16.6%. This combination of properties has not been realized among previously existing hydrogels.

摘要

水凝胶正在被开发出来以承受负载。其应用包括人造肌腱和肌肉,这些应用需要高强度来承受负载和低滞后性以减少能量损失。然而,同时实现高强度和低滞后性一直具有挑战性。通过合成相分离被阻止的水凝胶,这里就可以应对这一挑战。这种水凝胶具有互穿的亲水和疏水网络,这些网络会分离成富含水的相和贫水的相。这两个相在微观尺度上被阻止。柔软的亲水相在强疏水相上分散应力,从而导致高强度。这两个相具有弹性并通过拓扑缠结粘附,从而导致低滞后性。例如,由聚(丙烯酸乙酯)和聚(丙烯酸)制成的 76 重量%水的水凝胶,实现了 6.9 兆帕斯卡的拉伸强度和 16.6%的滞后性。这种性能组合在以前存在的水凝胶中尚未实现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/737f/10313164/285bd5690862/sciadv.adh7742-f1.jpg

相似文献

1
Hydrogels of arrested phase separation simultaneously achieve high strength and low hysteresis.
Sci Adv. 2023 Jun 30;9(26):eadh7742. doi: 10.1126/sciadv.adh7742.
2
Hydrophilic-Hydrophobic Network Hydrogels Achieving Optimal Strength and Hysteresis Balance.
ACS Appl Mater Interfaces. 2024 Oct 23;16(42):57769-57777. doi: 10.1021/acsami.4c14884. Epub 2024 Oct 9.
3
Topologically Enhanced Dual-Network Hydrogels with Rapid Recovery for Low-Hysteresis, Self-Adhesive Epidemic Electronics.
ACS Appl Mater Interfaces. 2021 Mar 17;13(10):12531-12540. doi: 10.1021/acsami.1c00819. Epub 2021 Mar 8.
4
Super-Strong, Nonswellable, and Biocompatible Hydrogels Inspired by Human Tendons.
ACS Appl Mater Interfaces. 2022 Jan 19;14(2):2638-2649. doi: 10.1021/acsami.1c23102. Epub 2022 Jan 4.
7
Freezing Molecular Orientation under Stretch for High Mechanical Strength but Anisotropic Hydrogels.
Small. 2016 Aug;12(32):4386-92. doi: 10.1002/smll.201601893. Epub 2016 Jul 4.
8
MXene Crosslinked Hydrogels with Low Hysteresis Conferred by Sliding Tangle Island Strategy.
Small. 2024 Aug;20(35):e2401622. doi: 10.1002/smll.202401622. Epub 2024 Apr 29.
9
"Nonswellable" hydrogel without mechanical hysteresis.
Science. 2014 Feb 21;343(6173):873-5. doi: 10.1126/science.1247811.

引用本文的文献

1
A skin-mimicking multifunctional hydrogel via hierarchical, reversible noncovalent interactions.
Sci Adv. 2025 May 16;11(20):eadv8523. doi: 10.1126/sciadv.adv8523.
2
Gradient Solvent Replacement-Mediated Formation of High-Strength Hydrogel-Forming Microneedle for Long-Term Drug Delivery.
Adv Sci (Weinh). 2025 Aug;12(30):e2500833. doi: 10.1002/advs.202500833. Epub 2025 May 2.
3
Hydrogels with prestressed tensegrity structures.
Nat Commun. 2025 Apr 16;16(1):3637. doi: 10.1038/s41467-025-58956-3.
7
Structure-Property Relationships of Granular Hybrid Hydrogels Formed through Polyelectrolyte Complexation.
Macromolecules. 2024 Mar 20;57(7):3190-3201. doi: 10.1021/acs.macromol.3c02335. eCollection 2024 Apr 9.

本文引用的文献

1
Self-assembled nanocomposites of high water content and load-bearing capacity.
Proc Natl Acad Sci U S A. 2022 Aug 9;119(32):e2203962119. doi: 10.1073/pnas.2203962119. Epub 2022 Jul 18.
2
Tough, aorta-inspired soft composites.
Proc Natl Acad Sci U S A. 2022 Jul 12;119(28):e2123497119. doi: 10.1073/pnas.2123497119. Epub 2022 Jul 5.
3
Topoarchitected polymer networks expand the space of material properties.
Nat Commun. 2022 Mar 25;13(1):1622. doi: 10.1038/s41467-022-29245-0.
4
Putting the Squeeze on Phase Separation.
JACS Au. 2021 Dec 10;2(1):66-73. doi: 10.1021/jacsau.1c00443. eCollection 2022 Jan 24.
5
Fracture, fatigue, and friction of polymers in which entanglements greatly outnumber cross-links.
Science. 2021 Oct 8;374(6564):212-216. doi: 10.1126/science.abg6320. Epub 2021 Oct 7.
6
Strong tough hydrogels via the synergy of freeze-casting and salting out.
Nature. 2021 Feb;590(7847):594-599. doi: 10.1038/s41586-021-03212-z. Epub 2021 Feb 24.
7
Weak Hydrogen Bonding Enables Hard, Strong, Tough, and Elastic Hydrogels.
Adv Mater. 2015 Nov 18;27(43):6899-905. doi: 10.1002/adma.201503724. Epub 2015 Oct 5.
10
"Nonswellable" hydrogel without mechanical hysteresis.
Science. 2014 Feb 21;343(6173):873-5. doi: 10.1126/science.1247811.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验