Institut des Sciences Cognitives Marc Jeannerod, CNRS UMR 5229, Lyon, France; Université Claude Bernard Lyon 1, Université de Lyon, France.
Institut des Sciences Cognitives Marc Jeannerod, CNRS UMR 5229, Lyon, France; Université Claude Bernard Lyon 1, Université de Lyon, France; Lyon Neuroscience Research Center, CRNL, INSERM, U1028, CNRS, UMR 5292, Lyon, France.
Prog Neurobiol. 2023 Sep;228:102490. doi: 10.1016/j.pneurobio.2023.102490. Epub 2023 Jun 28.
Classical analyses of induced, frequency-specific neural activity typically average band-limited power over trials. More recently, it has become widely appreciated that in individual trials, beta band activity occurs as transient bursts rather than amplitude-modulated oscillations. Most studies of beta bursts treat them as unitary, and having a stereotyped waveform. However, we show there is a wide diversity of burst shapes. Using a biophysical model of burst generation, we demonstrate that waveform variability is predicted by variability in the synaptic drives that generate beta bursts. We then use a novel, adaptive burst detection algorithm to identify bursts from human MEG sensor data recorded during a joystick-based reaching task, and apply principal component analysis to burst waveforms to define a set of dimensions, or motifs, that best explain waveform variance. Finally, we show that bursts with a particular range of waveform motifs, ones not fully accounted for by the biophysical model, differentially contribute to movement-related beta dynamics. Sensorimotor beta bursts are therefore not homogeneous events and likely reflect distinct computational processes.
经典的诱发性、频率特异性神经活动分析通常在试验中对带限功率进行平均。最近,人们越来越认识到,在个体试验中,β 频段活动表现为短暂的爆发,而不是幅度调制的振荡。大多数关于β爆发的研究将其视为单一的、具有标准波形的爆发。然而,我们发现爆发的形状有很大的多样性。我们使用爆发产生的生物物理模型证明,爆发的波形可变性是由产生β爆发的突触驱动的可变性来预测的。然后,我们使用一种新颖的自适应爆发检测算法从基于操纵杆的运动任务中记录的人类 MEG 传感器数据中识别爆发,并应用主成分分析来定义一组维度或基元,以最佳解释波形方差。最后,我们表明,具有特定范围的波形基元的爆发(生物物理模型不能完全解释)对运动相关β动力学有不同的贡献。因此,感觉运动β爆发不是同质事件,可能反映了不同的计算过程。