Suppr超能文献

利用激光诱导自荧光技术和多元算法鉴定商业抗疟草药。

Identification of Commercial Antimalarial Herbal Drugs Using Laser-Induced Autofluorescence Technique and Multivariate Algorithms.

机构信息

Laser and Fibre Optics Centre, School of Physical Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana.

出版信息

J Fluoresc. 2024 Mar;34(2):855-864. doi: 10.1007/s10895-023-03309-w. Epub 2023 Jul 1.

Abstract

In malaria-prone developing countries the integrity of Anti-Malarial Herbal Drugs (AMHDs) which are easily preferred for treatment can be compromised. Currently, existing techniques for identifying AMHDs are destructive. We report on the use of non-destructive and sensitive technique, Laser-Induced-Autofluorescence (LIAF) in combination with multivariate algorithms for identification of AMHDs. The LIAF spectra were recorded from commercially prepared decoction AMHDs purchased from accredited pharmacy shop in Ghana. Deconvolution of the LIAF spectra revealed secondary metabolites belonging to derivatives of alkaloids and classes of phenolic compounds of the AMHDs. Principal Component Analysis (PCA) and Hierarchical Clustering Analysis (HCA) were able to discriminate the AMHDs base on their physicochemical properties. Based on two principal components, the PCA- QDA (Quadratic Discriminant Analysis), PCA-LDA (Linear Discriminant Analysis), PCA-SVM (Support Vector Machine) and PCA-KNN (K-Nearest Neighbour) models were developed with an accuracy performance of 99.0, 99.7, 100.0, and 100%, respectively, in identifying AMHDs. PCA-SVM and PCA-KNN provided the best classification and stability performance. The LIAF technique in combination with multivariate techniques may offer a non-destructive and viable tool for AMHDs identification.

摘要

在疟疾流行的发展中国家,抗疟草药(AMHDs)的完整性可能受到影响,因为这些草药很容易被用作治疗药物。目前,用于识别 AMHDs 的现有技术具有破坏性。我们报告了使用非破坏性和敏感技术,即激光诱导自动荧光(LIAF)结合多元算法来识别 AMHDs。从加纳认可的药店购买的商业制备的汤剂 AMHDs 中记录了 LIAF 光谱。LIAF 光谱的解卷积揭示了属于生物碱衍生物和 AMHDs 酚类化合物类别的次生代谢物。主成分分析(PCA)和层次聚类分析(HCA)能够根据 AMHDs 的物理化学性质对其进行区分。基于两个主成分,建立了 PCA-QDA(二次判别分析)、PCA-LDA(线性判别分析)、PCA-SVM(支持向量机)和 PCA-KNN(K-最近邻)模型,它们在识别 AMHDs 方面的准确性分别为 99.0%、99.7%、100.0%和 100%。PCA-SVM 和 PCA-KNN 提供了最佳的分类和稳定性性能。LIAF 技术与多元技术相结合,可能为 AMHDs 的识别提供一种非破坏性和可行的工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验