Suppr超能文献

酵母酿酒酵母和幽门螺杆菌的全球蛋白质-蛋白质相互作用网络。

Global protein-protein interaction networks in yeast saccharomyces cerevisiae and helicobacter pylori.

机构信息

Faculty of Sciences, Islamic Azad University, Arak Branch, Arak, Markazi, Iran.

Computer Science, Dehli University, India.

出版信息

Talanta. 2023 Dec 1;265:124836. doi: 10.1016/j.talanta.2023.124836. Epub 2023 Jun 20.

Abstract

Understanding many biological processes relies heavily on accurately predicting protein-protein interactions (PPIs). In this study, we propose a novel method for predicting PPIs that is based on LogitBoost with a binary bat feature selection algorithm. Our approach involves the extraction of an initial feature vector by combining pseudo amino acid composition (PseAAC), pseudo-position-specific scoring matrix (PsePSSM), reduced sequence and index-vectors (RSIV), and autocorrelation descriptor (AD). Subsequently, a binary bat algorithm is applied to eliminate redundant features, and the resulting optimal features are fed into the LogitBoost classifier for the identification of PPIs. To evaluate the proposed method, we test it on two databases, Saccharomyces cerevisiae and Helicobacter pylori, using 10-fold cross-validation, and achieve accuracies of 94.39% and 97.89%, respectively. Our results showcase the significant potential of our pipeline in accurately predicting protein-protein interactions (PPIs), thereby offering a valuable resource to the scientific research community.

摘要

理解许多生物过程在很大程度上依赖于准确预测蛋白质-蛋白质相互作用 (PPIs)。在这项研究中,我们提出了一种基于 LogitBoost 的新方法,该方法结合了二进制蝙蝠特征选择算法用于预测蛋白质-蛋白质相互作用。我们的方法包括通过组合伪氨基酸组成 (PseAAC)、伪位置特异性评分矩阵 (PsePSSM)、简化序列和索引向量 (RSIV) 和自相关描述符 (AD) 来提取初始特征向量。然后,应用二进制蝙蝠算法消除冗余特征,将得到的最佳特征输入 LogitBoost 分类器以识别蛋白质-蛋白质相互作用。为了评估所提出的方法,我们在 Saccharomyces cerevisiae 和 Helicobacter pylori 两个数据库上进行了测试,使用 10 倍交叉验证,分别达到了 94.39%和 97.89%的准确率。我们的结果展示了我们的方法在准确预测蛋白质-蛋白质相互作用 (PPIs) 方面的巨大潜力,为科学界提供了有价值的资源。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验