Suppr超能文献

同源重组缺陷与酿酒酵母细胞周期和形态的变化有关。

Deficiency in homologous recombination is associated with changes in cell cycling and morphology in Saccharomyces cerevisiae.

机构信息

Chemistry and Biochemistry, Texas State University, 601 University Drive, San Marcos, TX, 78666, USA.

Chemistry and Biochemistry, Texas State University, 601 University Drive, San Marcos, TX, 78666, USA.

出版信息

Exp Cell Res. 2023 Sep 1;430(1):113701. doi: 10.1016/j.yexcr.2023.113701. Epub 2023 Jun 30.

Abstract

Exposure of eukaryotic cells to ionizing radiation or clastogenic chemicals leads to formation of DNA double-strand breaks (DSBs). These lesions are also generated internally by chemicals and enzymes, in the absence of exogenous agents, though the sources and consequences of such endogenously generated DSBs remain poorly understood. In the current study, we have investigated the impact of reduced recombinational repair of endogenous DSBs on stress responses, cell morphology and other physical properties of S. cerevisiae (budding yeast) cells. Use of phase contrast and DAPI-based fluorescence microscopy combined with FACS analysis confirmed that recombination-deficient rad52 cell cultures exhibit chronically high levels of G phase cells. Cell cycle phase transit times during G, S and M were similar in WT and rad52 cells, but the length of G phase was increased by three-fold in the mutants. rad52 cells were larger than WT in all phases of the cycle and displayed other quantifiable changes in physical characteristics. The high G cell phenotype was abolished when DNA damage checkpoint genes, but not spindle assembly checkpoint genes, were co-inactivated with RAD52. Several other RAD52 group mutants (rad51, rad54, rad55, rad57 and rad59) also exhibited the high G cell phenotype. The results indicate that recombination deficiency leads to accumulation of unrepaired DSBs during normal mitotic growth that activate a major stress response and produce distinct changes in cellular physiology and morphology.

摘要

真核细胞暴露于电离辐射或断裂剂化学物质会导致 DNA 双链断裂(DSBs)的形成。这些损伤也可以在没有外源剂的情况下由化学物质和酶内部产生,尽管内源性产生的 DSBs 的来源和后果仍知之甚少。在本研究中,我们研究了减少内源性 DSBs 的重组修复对酿酒酵母(芽殖酵母)细胞应激反应、细胞形态和其他物理特性的影响。使用相差和基于 DAPI 的荧光显微镜结合 FACS 分析证实,重组缺陷型 rad52 细胞培养物表现出慢性高水平的 G 期细胞。WT 和 rad52 细胞中 G、S 和 M 期的细胞周期相移时间相似,但突变体中 G 期的长度增加了三倍。在细胞周期的所有阶段,rad52 细胞都比 WT 细胞大,并表现出其他可量化的物理特性变化。当与 RAD52 共同失活 DNA 损伤检查点基因而不是纺锤体组装检查点基因时,高 G 细胞表型被消除。其他几种 RAD52 组突变体(rad51、rad54、rad55、rad57 和 rad59)也表现出高 G 细胞表型。结果表明,重组缺陷导致在正常有丝分裂生长过程中积累未修复的 DSBs,激活主要的应激反应,并在细胞生理和形态上产生明显变化。

相似文献

1
Deficiency in homologous recombination is associated with changes in cell cycling and morphology in Saccharomyces cerevisiae.
Exp Cell Res. 2023 Sep 1;430(1):113701. doi: 10.1016/j.yexcr.2023.113701. Epub 2023 Jun 30.
3
4
Live cell monitoring of double strand breaks in S. cerevisiae.
PLoS Genet. 2019 Mar 1;15(3):e1008001. doi: 10.1371/journal.pgen.1008001. eCollection 2019 Mar.
5
RAD51 is required for the repair of plasmid double-stranded DNA gaps from either plasmid or chromosomal templates.
Mol Cell Biol. 2000 Feb;20(4):1194-205. doi: 10.1128/MCB.20.4.1194-1205.2000.
6
Rad52 and Rad59 exhibit both overlapping and distinct functions.
DNA Repair (Amst). 2007 Jan 4;6(1):27-37. doi: 10.1016/j.dnarep.2006.08.007. Epub 2006 Sep 20.

引用本文的文献

2
Deep structure-function analysis of the endonuclease Mus81 with dominant mutational scanning.
Proc Natl Acad Sci U S A. 2025 Jun 24;122(25):e2506043122. doi: 10.1073/pnas.2506043122. Epub 2025 Jun 18.
3
Characterization of the Gene in the Budding Yeast .
Genes (Basel). 2023 Oct 5;14(10):1908. doi: 10.3390/genes14101908.

本文引用的文献

1
RAD52: Paradigm of Synthetic Lethality and New Developments.
Front Genet. 2021 Nov 23;12:780293. doi: 10.3389/fgene.2021.780293. eCollection 2021.
2
The Safe Path at the Fork: Ensuring Replication-Associated DNA Double-Strand Breaks are Repaired by Homologous Recombination.
Front Genet. 2021 Sep 27;12:748033. doi: 10.3389/fgene.2021.748033. eCollection 2021.
3
Mechanisms of genome stability maintenance during cell division.
DNA Repair (Amst). 2021 Dec;108:103215. doi: 10.1016/j.dnarep.2021.103215. Epub 2021 Aug 23.
5
Making Choices: DNA Replication Fork Recovery Mechanisms.
Semin Cell Dev Biol. 2021 May;113:27-37. doi: 10.1016/j.semcdb.2020.10.001. Epub 2020 Oct 22.
6
Sae2 and Rif2 regulate MRX endonuclease activity at DNA double-strand breaks in opposite manners.
Cell Rep. 2021 Mar 30;34(13):108906. doi: 10.1016/j.celrep.2021.108906.
7
RNA polymerase III is required for the repair of DNA double-strand breaks by homologous recombination.
Cell. 2021 Mar 4;184(5):1314-1329.e10. doi: 10.1016/j.cell.2021.01.048. Epub 2021 Feb 23.
8
Non-recombinogenic roles for Rad52 in translesion synthesis during DNA damage tolerance.
EMBO Rep. 2021 Jan 7;22(1):e50410. doi: 10.15252/embr.202050410. Epub 2020 Dec 2.
10
Dynamic elements of replication protein A at the crossroads of DNA replication, recombination, and repair.
Crit Rev Biochem Mol Biol. 2020 Oct;55(5):482-507. doi: 10.1080/10409238.2020.1813070. Epub 2020 Aug 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验