Pi Yutong, Cui Linxia, Luo Wenhao, Li Haitao, Ma Yanfu, Ta Na, Wang Xinyao, Gao Rui, Wang Dan, Yang Qihua, Liu Jian
State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, 116023, Dalian, China.
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China.
Angew Chem Int Ed Engl. 2023 Oct 23;62(43):e202307096. doi: 10.1002/anie.202307096. Epub 2023 Jul 17.
Mimicking the structures and functions of cells to create artificial organelles has spurred the development of efficient strategies for production of hollow nanoreactors with biomimetic catalytic functions. However, such structure are challenging to fabricate and are thus rarely reported. We report the design of hollow nanoreactors with hollow multishelled structure (HoMS) and spatially loaded metal nanoparticles. Starting from a molecular-level design strategy, well-defined hollow multishelled structure phenolic resins (HoMS-PR) and carbon (HoMS-C) submicron particles were accurately constructed. HoMS-C serves as an excellent, versatile platform, owing to its tunable properties with tailored functional sites for achieving precise spatial location of metal nanoparticles, internally encapsulated (Pd@HoMS-C) or externally supported (Pd/HoMS-C). Impressively, the combination of the delicate nanoarchitecture and spatially loaded metal nanoparticles endow the pair of nanoreactors with size-shape-selective molecular recognition properties in catalytic semihydrogenation, including high activity and selectivity of Pd@HoMS-C for small aliphatic substrates and Pd/HoMS-C for large aromatic substrates. Theoretical calculations provide insight into the pair of nanoreactors with distinct behaviors due to the differences in energy barrier of substrate adsorption. This work provides guidance on the rational design and accurate construction of hollow nanoreactors with precisely located active sites and a finely modulated microenvironment by mimicking the functions of cells.
模仿细胞的结构和功能来制造人造细胞器,推动了具有仿生催化功能的中空纳米反应器高效制备策略的发展。然而,这种结构的制造具有挑战性,因此鲜有报道。我们报道了具有中空多壳结构(HoMS)和空间负载金属纳米颗粒的中空纳米反应器的设计。从分子水平的设计策略出发,精确构建了结构明确的中空多壳结构酚醛树脂(HoMS-PR)和碳(HoMS-C)亚微米颗粒。HoMS-C由于其具有可调节的性质以及用于实现金属纳米颗粒精确空间定位的定制功能位点,可作为一个出色的通用平台,金属纳米颗粒可内部封装(Pd@HoMS-C)或外部负载(Pd/HoMS-C)。令人印象深刻的是,精致的纳米结构与空间负载的金属纳米颗粒相结合,赋予了这对纳米反应器在催化半氢化反应中尺寸形状选择性分子识别特性,包括Pd@HoMS-C对小脂肪族底物以及Pd/HoMS-C对大芳香族底物具有高活性和选择性。理论计算揭示了由于底物吸附能垒差异导致这对纳米反应器具有不同行为的原因。这项工作为通过模仿细胞功能合理设计和精确构建具有精确定位活性位点和精细调节微环境的中空纳米反应器提供了指导。