Alvarado Walter, Agrawal Vasundhara, Li Wing Shun, Dravid Vinayak P, Backman Vadim, de Pablo Juan J, Ferguson Andrew L
Biophysical Sciences, University of Chicago, Chicago, Illinois 60637, United States.
Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States.
ACS Cent Sci. 2023 Jun 5;9(6):1200-1212. doi: 10.1021/acscentsci.3c00178. eCollection 2023 Jun 28.
Scanning transmission electron microscopy tomography with ChromEM staining (ChromSTEM), has allowed for the three-dimensional study of genome organization. By leveraging convolutional neural networks and molecular dynamics simulations, we have developed a denoising autoencoder (DAE) capable of postprocessing experimental ChromSTEM images to provide nucleosome-level resolution. Our DAE is trained on synthetic images generated from simulations of the chromatin fiber using the 1-cylinder per nucleosome (1CPN) model of chromatin. We find that our DAE is capable of removing noise commonly found in high-angle annular dark field (HAADF) STEM experiments and is able to learn structural features driven by the physics of chromatin folding. The DAE outperforms other well-known denoising algorithms without degradation of structural features and permits the resolution of α-tetrahedron tetranucleosome motifs that induce local chromatin compaction and mediate DNA accessibility. Notably, we find no evidence for the 30 nm fiber, which has been suggested to serve as the higher-order structure of the chromatin fiber. This approach provides high-resolution STEM images that allow for the resolution of single nucleosomes and organized domains within chromatin dense regions comprising of folding motifs that modulate the accessibility of DNA to external biological machinery.
基于ChromEM染色的扫描透射电子显微镜断层扫描技术(ChromSTEM),已能够对基因组组织进行三维研究。通过利用卷积神经网络和分子动力学模拟,我们开发了一种去噪自动编码器(DAE),它能够对实验性ChromSTEM图像进行后处理,以提供核小体水平的分辨率。我们的DAE是在使用染色质的每个核小体1圆柱体(1CPN)模型对染色质纤维模拟生成的合成图像上进行训练的。我们发现,我们的DAE能够去除高角度环形暗场(HAADF)扫描透射电子显微镜实验中常见的噪声,并能够学习由染色质折叠物理驱动的结构特征。该DAE在不降低结构特征的情况下优于其他著名的去噪算法,并能够分辨出诱导局部染色质压缩并介导DNA可及性的α-四面体四核小体基序。值得注意的是,我们没有发现30 nm纤维的证据,而30 nm纤维曾被认为是染色质纤维的高阶结构。这种方法提供了高分辨率的扫描透射电子显微镜图像,能够分辨单个核小体以及染色质密集区域内由调节DNA对外源生物机器可及性的折叠基序组成的有组织区域。