Rathod Jagannath, Moram Sree Satya Bharati, Chandu Byram, Albrycht Paweł, Soma Venugopal Rao
Advanced Centre for Research in High Energy Materials (ACRHEM), DRDO Industry Academia-Centre of Excellence (DIA-COE) University of Hyderabad, Prof. C. R. Rao Road, Hyderabad 500046, Telangana, India.
Department of Physics, College of Arts and Sciences, University of Dayton, 300 College Park, Dayton, OH 45469, United States of America.
Nanotechnology. 2023 Jul 19;34(40). doi: 10.1088/1361-6528/ace3c9.
We present a simple, fast, and single-step approach for fabricating hybrid semiconductor-metal nanoentities through liquid-assisted ultrafast (∼50 fs, 1 kHz, 800 nm) laser ablation. Femtosecond (fs) ablation of Germanium (Ge) substrate was executed in (i) distilled water (ii) silver nitrate (AgNO-3, 5, 10 mM) (iii) Chloroauric acid (HAuCl-3, 5, 10 mM), yielding the formation of pure Ge, hybrid Ge-silver (Ag), Ge-gold (Au) nanostructures (NSs) and nanoparticles (NPs). The morphological features and corresponding elemental compositions of Ge, Ge-Ag, and Ge-Au NSs/NPs have been conscientiously studied using different characterization techniques. Most importantly, the deposition of Ag/Au NPs on the Ge substrate and their size variation were thoroughly investigated by changing the precursor concentration. By increasing the precursor concentration (from 3 mM to 10 mM), the deposited Au NPs and Ag NPs' size on the Ge nanostructured surface was increased from ∼46 nm to ∼100 nm and from ∼43 nm to ∼70 nm, respectively. Subsequently, the as-fabricated hybrid (Ge-Au/Ge-Ag) NSs were effectively utilized to detect diverse hazardous molecules (e.g. picric acid and thiram) via the technique of surface-enhanced Raman scattering (SERS). Our findings revealed that the hybrid SERS substrates achieved at 5 mM precursor concentration of Ag (denoted as Ge-5Ag) and Au (denoted as Ge-5Au) had demonstrated superior sensitivity with the enhancement factors of ∼2.5 × 10, 1.38 × 10(for PA), and ∼9.7 × 10and 9.2 × 10(for thiram), respectively. Interestingly, the Ge-5Ag substrate has exhibited ∼10.5 times higher SERS signals than the Ge-5Au substrate.
我们提出了一种简单、快速且单步的方法,通过液体辅助超快(约50飞秒、1千赫兹、800纳米)激光烧蚀来制备混合半导体-金属纳米实体。在(i)蒸馏水、(ii)硝酸银(AgNO₃,5、10毫摩尔)、(iii)氯金酸(HAuCl₃,5、10毫摩尔)中对锗(Ge)衬底进行飞秒(fs)烧蚀,从而形成纯Ge、混合Ge-银(Ag)、Ge-金(Au)纳米结构(NSs)和纳米颗粒(NPs)。已使用不同的表征技术认真研究了Ge、Ge-Ag和Ge-Au NSs/NPs的形态特征及相应的元素组成。最重要的是,通过改变前驱体浓度,对Ag/Au NPs在Ge衬底上的沉积及其尺寸变化进行了深入研究。通过增加前驱体浓度(从3毫摩尔增加到10毫摩尔),在Ge纳米结构表面沉积的Au NPs和Ag NPs的尺寸分别从约46纳米增加到约100纳米以及从约43纳米增加到约70纳米。随后,通过表面增强拉曼散射(SERS)技术,将制备的混合(Ge-Au/Ge-Ag)NSs有效地用于检测多种有害分子(如苦味酸和福美双)。我们的研究结果表明,在前驱体浓度为5毫摩尔的Ag(表示为Ge-5Ag)和Au(表示为Ge-5Au)时获得的混合SERS基底表现出卓越的灵敏度,苦味酸的增强因子分别约为2.5×10、1.38×10,福美双的增强因子分别约为9.7×10和9.2×10。有趣的是,Ge-5Ag基底的SERS信号比Ge-5Au基底高约10.5倍。