Kim Jaehun, Choi Young In, Sohn Jeong-Woo, Kim Sung-Phil, Jung Sung Jun
Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea.
Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea.
Exp Neurobiol. 2023 Jun 30;32(3):157-169. doi: 10.5607/en23005.
To develop a biomimetic artificial tactile sensing system capable of detecting sustained mechanical touch, we propose a novel biological neuron model (BNM) for slowly adapting type I (SA-I) afferent neurons. The proposed BNM is designed by modifying the Izhikevich model to incorporate long-term spike frequency adaptation. Adjusting the parameters renders the Izhikevich model describing various neuronal firing patterns. We also search for optimal parameter values for the proposed BNM to describe firing patterns of biological SA-I afferent neurons in response to sustained pressure longer than 1-second. We obtain the firing data of SA-I afferent neurons for six different mechanical pressure ranging from 0.1 mN to 300 mN from the ex-vivo experiment on SA-I afferent neurons in rodents. Upon finding the optimal parameters, we generate spike trains using the proposed BNM and compare the resulting spike trains to those of biological SA-I afferent neurons using the spike distance metrics. We verify that the proposed BNM can generate spike trains showing long-term adaptation, which is not achievable by other conventional models. Our new model may offer an essential function to artificial tactile sensing technology to perceive sustained mechanical touch.
为了开发一种能够检测持续机械触摸的仿生人工触觉传感系统,我们提出了一种用于慢适应I型(SA-I)传入神经元的新型生物神经元模型(BNM)。所提出的BNM是通过修改Izhikevich模型来纳入长期脉冲频率适应而设计的。调整参数可使Izhikevich模型描述各种神经元放电模式。我们还为所提出的BNM寻找最佳参数值,以描述生物SA-I传入神经元在响应持续时间超过1秒的持续压力时的放电模式。我们从对啮齿动物SA-I传入神经元的离体实验中获得了六种不同机械压力(范围从0.1 mN到300 mN)下SA-I传入神经元的放电数据。找到最佳参数后,我们使用所提出的BNM生成脉冲序列,并使用脉冲距离度量将所得脉冲序列与生物SA-I传入神经元的脉冲序列进行比较。我们验证了所提出的BNM能够生成显示长期适应的脉冲序列,这是其他传统模型无法实现的。我们的新模型可能为人工触觉传感技术感知持续机械触摸提供一项基本功能。