Imaging Center, Harbin Medical University Cancer Hospital, Harbin, China.
Division of Respiratory Disease, Fourth Affiliated Hospital of Harbin Medical University, Harbin, China.
J Magn Reson Imaging. 2024 Apr;59(4):1425-1435. doi: 10.1002/jmri.28895. Epub 2023 Jul 5.
BACKGROUND: Dynamic contrast-enhanced (DCE) MRI commonly outperforms diffusion-weighted (DW) MRI in breast cancer discrimination. However, the side effects of contrast agents limit the use of DCE-MRI, particularly in patients with chronic kidney disease. PURPOSE: To develop a novel deep learning model to fully exploit the potential of overall b-value DW-MRI without the need for a contrast agent in predicting breast cancer molecular subtypes and to evaluate its performance in comparison with DCE-MRI. STUDY TYPE: Prospective. SUBJECTS: 486 female breast cancer patients (training/validation/test: 64%/16%/20%). FIELD STRENGTH/SEQUENCE: 3.0 T/DW-MRI (13 b-values) and DCE-MRI (one precontrast and five postcontrast phases). ASSESSMENT: The breast cancers were divided into four subtypes: luminal A, luminal B, HER2+, and triple negative. A channel-dimensional feature-reconstructed (CDFR) deep neural network (DNN) was proposed to predict these subtypes using pathological diagnosis as the reference standard. Additionally, a non-CDFR DNN (NCDFR-DNN) was built for comparative purposes. A mixture ensemble DNN (ME-DNN) integrating two CDFR-DNNs was constructed to identify subtypes on multiparametric MRI (MP-MRI) combing DW-MRI and DCE-MRI. STATISTICAL TESTS: Model performance was evaluated using accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve (AUC). Model comparisons were performed using the one-way analysis of variance with least significant difference post hoc test and the DeLong test. P < 0.05 was considered significant. RESULTS: The CDFR-DNN (accuracies, 0.79 ~ 0.80; AUCs, 0.93 ~ 0.94) demonstrated significantly improved predictive performance than the NCDFR-DNN (accuracies, 0.76 ~ 0.78; AUCs, 0.92 ~ 0.93) on DW-MRI. Utilizing the CDFR-DNN, DW-MRI attained the predictive performance equal (P = 0.065 ~ 1.000) to DCE-MRI (accuracies, 0.79 ~ 0.80; AUCs, 0.93 ~ 0.95). The predictive performance of the ME-DNN on MP-MRI (accuracies, 0.85 ~ 0.87; AUCs, 0.96 ~ 0.97) was superior to those of both the CDFR-DNN and NCDFR-DNN on either DW-MRI or DCE-MRI. DATA CONCLUSION: The CDFR-DNN enabled overall b-value DW-MRI to achieve the predictive performance comparable to DCE-MRI. MP-MRI outperformed DW-MRI and DCE-MRI in subtype prediction. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY STAGE: 1.
背景:动态对比增强(DCE)MRI 在乳腺癌鉴别方面通常优于弥散加权(DW)MRI。然而,造影剂的副作用限制了 DCE-MRI 的使用,特别是在慢性肾病患者中。
目的:开发一种新的深度学习模型,充分利用整体 b 值 DW-MRI 的潜力,无需造影剂即可预测乳腺癌分子亚型,并评估其与 DCE-MRI 相比的性能。
研究类型:前瞻性。
受试者:486 名女性乳腺癌患者(训练/验证/测试:64%/16%/20%)。
磁场强度/序列:3.0T/DW-MRI(13 个 b 值)和 DCE-MRI(一个预对比和五个后对比相)。
评估:将乳腺癌分为四种亚型:管腔 A、管腔 B、HER2+和三阴性。提出了一种通道维度特征重建(CDFR)深度神经网络(DNN),使用病理诊断作为参考标准来预测这些亚型。此外,还构建了一个非 CDFR-DNN(NCDFR-DNN)进行比较。构建了一个混合集成 DNN(ME-DNN),将 DW-MRI 和 DCE-MRI 结合起来,对多参数 MRI(MP-MRI)进行亚型识别。
统计检验:使用准确性、敏感度、特异性和接收器工作特征曲线下的面积(AUC)评估模型性能。使用单向方差分析和最小显著差异事后检验以及 DeLong 检验进行模型比较。P<0.05 被认为具有统计学意义。
结果:CDFR-DNN(准确率,0.790.80;AUC,0.930.94)在 DW-MRI 上表现出比 NCDFR-DNN(准确率,0.760.78;AUC,0.920.93)显著改善的预测性能。利用 CDFR-DNN,DW-MRI 达到了与 DCE-MRI 相当的预测性能(P=0.0651.000)(准确率,0.790.80;AUC,0.930.95)。ME-DNN 在 MP-MRI 上的预测性能(准确率,0.850.87;AUC,0.96~0.97)优于 CDFR-DNN 和 NCDFR-DNN 在 DW-MRI 或 DCE-MRI 上的预测性能。
数据结论:CDFR-DNN 使整体 b 值 DW-MRI 能够实现与 DCE-MRI 相当的预测性能。MP-MRI 在亚型预测方面优于 DW-MRI 和 DCE-MRI。
证据水平:2 技术功效阶段:1。
J Cancer Res Clin Oncol. 2022-1
J Magn Reson Imaging. 2024-3