Australian Rivers Institute, Griffith University, Nathan, Queensland 4111, Australia.
Queensland Health, Forensic and Scientific Services, Coopers Plains, Queensland 4108, Australia.
Sci Adv. 2023 Jul 7;9(27):eadg1549. doi: 10.1126/sciadv.adg1549. Epub 2023 Jul 5.
Despite differences in their overall metabolism, eukaryotes share a common mitochondrial biochemistry. We investigated how this fundamental biochemistry supports overall metabolism using a high-resolution carbon isotope approach, position-specific isotope analysis. We measured carbon isotope C/C cycling in animals, focusing on amino acids that are formed in mitochondrial reactions and are most metabolically active. Carboxyl isotope determinations for amino acids showed strong signals related to common biochemical pathways. Contrasting isotope patterns were measured for metabolism associated with major life history patterns, including growth and reproduction. Turnover of proteins and lipids as well as gluoconeogensis dynamics could be estimated for these metabolic life histories. The high-resolution isotomics measurements fingerprinted metabolism and metabolic strategies across the eukaryotic animal kingdom, yielding results for humans, ungulates, whales, and diverse fish and invertebrates in a nearshore marine food web.
尽管真核生物的整体代谢存在差异,但它们共享着共同的线粒体生物化学。我们使用高分辨率的碳同位素方法——位置特异性同位素分析,研究了这种基本生物化学如何支持整体代谢。我们测量了动物中的碳同位素 C/C 循环,重点是在线粒体反应中形成且代谢最活跃的氨基酸。氨基酸的羧基同位素测定显示出与常见生化途径相关的强烈信号。与主要生命史模式(包括生长和繁殖)相关的代谢则表现出相反的同位素模式。这些代谢生命史中的蛋白质和脂质周转率以及糖异生动力学都可以进行估计。这些高分辨率的同位素组学测量为整个真核动物王国的代谢和代谢策略提供了指纹图谱,为人类、有蹄类动物、鲸鱼以及近岸海洋食物网中的各种鱼类和无脊椎动物提供了结果。