Suppr超能文献

半芯电子对氦辐照铝纳米片阻止本领的影响。

Effects of semicore electrons on stopping power in helium-irradiated aluminum nanosheets.

作者信息

Pang Su-Na, Wang Feng, Sun Ya-Ting, Mao Fei, Gao Cong-Zhang

机构信息

School of Physics, Beijing Institute of Technology, Beijing, China.

School of Nuclear Science and Technology, University of South China, Hengyang, China.

出版信息

Phys Chem Chem Phys. 2023 Jul 19;25(28):18932-18941. doi: 10.1039/d3cp01506h.

Abstract

The stopping power of energetic He ions traversing an Al film is studied by combining the time-dependent density-functional theory method with molecular dynamics simulations. We investigated the dependence of the semicore electron excitation of the Al film on the projectile's trajectory and its charge state. Our results show that for the off-channeling trajectories the semicore electrons contribute significantly to the stopping power of the Al film as the He ion velocity exceeds 1.0 a.u, and in contrast, it is negligible for the channeling trajectories. Most importantly, we found two unexpected effects of semicore electrons on the stopping power in helium-irradiated aluminum nanosheets, , (1) the semicore electrons can contribute to the energy loss for both high and low energy projectiles under the off-channeling trajectory; (2) as the projectile velocity increases from 0.4 a.u. to 2.0 a.u. although semicore electron excitation (including transition in the target, ionization away from the target and transfer to the projectile ion) of the target atom is gradually inhibited, the influence of semicore electrons on valence electron excitation is gradually enhanced. Our finding allows us to gain new insights into the stopping of ions in metals.

摘要

通过将含时密度泛函理论方法与分子动力学模拟相结合,研究了高能氦离子穿过铝膜时的阻止本领。我们研究了铝膜半芯电子激发对入射粒子轨迹及其电荷态的依赖性。结果表明,对于非沟道轨迹,当氦离子速度超过1.0 a.u.时,半芯电子对铝膜的阻止本领有显著贡献;相比之下,对于沟道轨迹,其贡献可忽略不计。最重要的是,我们发现了半芯电子在氦辐照铝纳米片中对阻止本领的两个意外效应:(1)在非沟道轨迹下,半芯电子对高能和低能入射粒子的能量损失均有贡献;(2)当入射粒子速度从0.4 a.u.增加到2.0 a.u.时,尽管靶原子的半芯电子激发(包括在靶内的跃迁、离靶电离和转移到入射离子)逐渐受到抑制,但半芯电子对价电子激发的影响却逐渐增强。我们的发现使我们对离子在金属中的阻止过程有了新的认识。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验