Suppr超能文献

氧和过氧化氢对Sb(III)与Fe(II)共氧化作用的机理洞察:主要活性氧物种及有机配体的作用

Mechanistic insights into Sb(III) and Fe(II) co-oxidation by oxygen and hydrogen peroxide: Dominant reactive oxygen species and roles of organic ligands.

作者信息

Wang Yiqing, Kong Linghao, He Mengchang, Lin Chunye, Ouyang Wei, Liu Xitao, Peng Xianjia

机构信息

State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, China.

State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.

出版信息

Water Res. 2023 Aug 15;242:120296. doi: 10.1016/j.watres.2023.120296. Epub 2023 Jul 2.

Abstract

Sole O or HO oxidant hardly oxidize Sb(III) on a time scale of hours to days, but Sb(III) oxidation can simultaneously occur in Fe(II) oxidation by O and HO due to the generation of reactive oxygen species (ROS). However, Sb(III) and Fe(II) co-oxidation mechanisms regarding the dominant ROS and effects of organic ligands require further elucidation. Herein, the co-oxidation of Sb(III) and Fe(II) by O and HO was studied in detail. The results indicated that increasing the pH significantly increased Sb(III) and Fe(II) oxidation rates during Fe(II) oxygenation, while the highest Sb(III) oxidation rate and oxidation efficiency was obtained at pH 3 with HO as the oxidant. HCO and HPOanions exerted different effects on Sb(III) oxidation in Fe(II) oxidation processes by O and HO. In addition, Fe(II) complexed with organic ligands could improve Sb(III) oxidation rates by 1 to 4 orders of magnitude mainly due to more ROS production. Moreover, quenching experiments combined with the PMSO probe demonstrated that OH was the main ROS at acidic pH, whereas Fe(IV) played a key role in Sb(III) oxidation at near-neutral pH. In particular, the steady-state concentration of Fe(IV) ([Fe(IV)]) and k were determined to be 1.66×10 M and 2.57×10 M s, respectively. Overall, these findings help to better understand the geochemical cycling and fate of Sb in Fe(II)- and DOM-rich subsurface environments undergoing redox fluctuations and are conductive to developing Fenton reactions for the in-situ remediation of Sb(III)-contaminated environments.

摘要

单独的O或HO氧化剂在数小时至数天的时间尺度内几乎不会氧化Sb(III),但由于活性氧物种(ROS)的产生,在O和HO氧化Fe(II)的过程中,Sb(III)氧化可能同时发生。然而,关于主要ROS以及有机配体影响的Sb(III)和Fe(II)共氧化机制仍需进一步阐明。在此,详细研究了O和HO对Sb(III)和Fe(II)的共氧化作用。结果表明,在Fe(II)充氧过程中,提高pH值会显著提高Sb(III)和Fe(II)的氧化速率,而以HO作为氧化剂时,在pH 3时可获得最高的Sb(III)氧化速率和氧化效率。HCO和HPO阴离子在O和HO氧化Fe(II)的过程中对Sb(III)氧化产生不同影响。此外,与有机配体络合的Fe(II)可将Sb(III)氧化速率提高1至4个数量级,这主要是由于产生了更多的ROS。此外,猝灭实验结合PMSO探针表明,在酸性pH值下,OH是主要的ROS,而在近中性pH值下,Fe(IV)在Sb(III)氧化中起关键作用。特别是,Fe(IV)的稳态浓度([Fe(IV)])和k分别测定为1.66×10 M和2.57×10 M s。总体而言,这些发现有助于更好地理解在经历氧化还原波动的富含Fe(II)和DOM的地下环境中Sb的地球化学循环和归宿,并有助于开发用于原位修复Sb(III)污染环境的芬顿反应。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验