Askins Erik J, Zoric Marija R, Li Matthew, Amine Rachid, Amine Khalil, Curtiss Larry A, Glusac Ksenija D
Department of Chemistry, University of Illinois Chicago, Chicago, IL, USA.
Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, USA.
Nat Chem. 2023 Sep;15(9):1247-1254. doi: 10.1038/s41557-023-01268-0. Epub 2023 Jul 6.
A major impediment to Li-O battery commercialization is the low discharge capacities resulting from electronically insulating LiO film growth on carbon electrodes. Redox mediation offers an effective strategy to drive oxygen chemistry into solution, avoiding surface-mediated LiO film growth and extending discharge lifetimes. As such, the exploration of diverse redox mediator classes can aid the development of molecular design criteria. Here we report a class of triarylmethyl cations that are effective at enhancing discharge capacities up to 35-fold. Surprisingly, we observe that redox mediators with more positive reduction potentials lead to larger discharge capacities because of their improved ability to suppress the surface-mediated reduction pathway. This result provides important structure-property relationships for future improvements in redox-mediated O/LiO discharge capacities. Furthermore, we applied a chronopotentiometry model to investigate the zones of redox mediator standard reduction potentials and the concentrations needed to achieve efficient redox mediation at a given current density. We expect this analysis to guide future redox mediator exploration.
锂氧电池商业化的一个主要障碍是碳电极上电子绝缘的LiO薄膜生长导致的低放电容量。氧化还原介导提供了一种有效的策略,可将氧化学反应驱动到溶液中,避免表面介导的LiO薄膜生长并延长放电寿命。因此,探索不同类别的氧化还原介质有助于制定分子设计标准。在此,我们报告了一类三芳基甲基阳离子,它们能有效提高放电容量达35倍。令人惊讶的是,我们观察到具有更正还原电位的氧化还原介质会导致更大的放电容量,这是因为它们抑制表面介导还原途径的能力有所提高。这一结果为未来提高氧化还原介导的O/LiO放电容量提供了重要的结构-性质关系。此外,我们应用计时电位法模型研究了氧化还原介质标准还原电位区域以及在给定电流密度下实现有效氧化还原介导所需的浓度。我们期望这一分析能指导未来的氧化还原介质探索。