Mithieux G, Roux B, Rousset B
Biochim Biophys Acta. 1986 Aug 29;888(1):49-61. doi: 10.1016/0167-4889(86)90070-4.
The interaction of tubulin with chromatin has been studied using a radiolabeled tubulin binding assay and velocity sedimentation analysis on isokinetic sucrose gradients. Soluble chromatin was prepared by mild micrococcal nuclease digestion of rat liver nuclei and tubulin was purified from rat brain by temperature-dependent assembly-disassembly and phosphocellulose chromatography. The tubulin-binding assay is based on the ability of chromatin to precipitate quantitatively at physiological ionic strength allowing separation of free tubulin from chromatin-bound tubulin. The binding of tubulin to unfractionated soluble chromatin was rapid, reversible and saturable. Saturation of binding sites was obtained using tubulin concentrations ranging from 0.5 to 400 micrograms/ml, in the presence of a high concentration (2.5 mg/ml) of another acidic protein, bovine serum albumin. The Scatchard and Hill plots showed that tubulin bound to a single class of non-interacting sites and yielded values of (0.5-0.6) X 10(7) M-1 for an apparent Ka and a maximal binding capacity of 0.8 nmol tubulin/mg DNA, i.e. about 1 molecule of tubulin/10 nucleosomes. Similar binding parameters were obtained when binding experiments were performed with insoluble chromatin in 0.15 M NaCl. Velocity sedimentation analysis of tubulin-chromatin complexes revealed that tubulin bound to all classes of chromatin oligomers, irrespective of the length of the nucleosomal chain. Tubulin-trinucleosome complexes formed from isolated trinucleosome in the presence of an excess of tubulin were separated from free reactants. It was found that 10-15% of the starting oligonucleosomal species reacted with tubulin, in a stoichiometry of about 0.8 molecule of tubulin/nucleosome. Given the characteristics of the binding and the expected cellular free tubulin concentration, the tubulin-chromatin interaction could possibly take place in vivo, when the nuclear membrane breaks down during the first steps of mitosis.
已使用放射性标记的微管蛋白结合试验以及在等速蔗糖梯度上的速度沉降分析,对微管蛋白与染色质的相互作用进行了研究。通过用温和的微球菌核酸酶消化大鼠肝细胞核来制备可溶性染色质,并且通过温度依赖性组装 - 拆卸和磷酸纤维素色谱法从大鼠脑中纯化微管蛋白。微管蛋白结合试验基于染色质在生理离子强度下定量沉淀的能力,从而能够将游离微管蛋白与染色质结合的微管蛋白分离。微管蛋白与未分级的可溶性染色质的结合迅速、可逆且具有饱和性。在高浓度(2.5mg/ml)的另一种酸性蛋白牛血清白蛋白存在下,使用浓度范围为0.5至400μg/ml的微管蛋白可实现结合位点的饱和。Scatchard图和Hill图表明微管蛋白结合到一类非相互作用位点,表观解离常数Ka的值为(0.5 - 0.6)×10⁷ M⁻¹,最大结合容量为0.8nmol微管蛋白/mg DNA,即约1个微管蛋白分子/10个核小体。当在0.15M NaCl中对不溶性染色质进行结合实验时,获得了类似的结合参数。微管蛋白 - 染色质复合物的速度沉降分析表明,微管蛋白与所有类别的染色质寡聚体结合,而与核小体链的长度无关。在过量微管蛋白存在下由分离的三核小体形成的微管蛋白 - 三核小体复合物与游离反应物分离。结果发现,起始寡核小体物种中有10 - 15%与微管蛋白反应,化学计量比约为0.8个微管蛋白分子/核小体。鉴于结合的特性以及预期的细胞内游离微管蛋白浓度,当核膜在有丝分裂的第一步期间破裂时,微管蛋白 - 染色质相互作用可能在体内发生。