Robnik Jakob, Seljak Uroš
Physics Department, University of California at Berkeley, Berkeley, CA 94720, USA.
Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
Entropy (Basel). 2022 Sep 21;24(10):1328. doi: 10.3390/e24101328.
In many hypothesis testing applications, we have mixed priors, with well-motivated informative priors for some parameters but not for others. The Bayesian methodology uses the Bayes factor and is helpful for the informative priors, as it incorporates Occam's razor via the multiplicity or trials factor in the look-elsewhere effect. However, if the prior is not known completely, the frequentist hypothesis test via the false-positive rate is a better approach, as it is less sensitive to the prior choice. We argue that when only partial prior information is available, it is best to combine the two methodologies by using the Bayes factor as a test statistic in the frequentist analysis. We show that the standard frequentist maximum likelihood-ratio test statistic corresponds to the Bayes factor with a non-informative Jeffrey's prior. We also show that mixed priors increase the statistical power in frequentist analyses over the maximum likelihood test statistic. We develop an analytic formalism that does not require expensive simulations and generalize Wilks' theorem beyond its usual regime of validity. In specific limits, the formalism reproduces existing expressions, such as the -value of linear models and periodograms. We apply the formalism to an example of exoplanet transits, where multiplicity can be more than 107. We show that our analytic expressions reproduce the -values derived from numerical simulations. We offer an interpretation of our formalism based on the statistical mechanics. We introduce the counting of states in a continuous parameter space using the uncertainty volume as the quantum of the state. We show that both the -value and Bayes factor can be expressed as an energy versus entropy competition.
在许多假设检验应用中,我们有混合先验,对于某些参数有动机充分的信息性先验,但对其他参数则没有。贝叶斯方法使用贝叶斯因子,对信息性先验很有帮助,因为它通过别处查找效应中的多重性或试验因子纳入了奥卡姆剃刀原理。然而,如果先验不完全已知,通过误报率进行的频率主义假设检验是更好的方法,因为它对先验选择不太敏感。我们认为,当只有部分先验信息可用时,最好通过在频率主义分析中使用贝叶斯因子作为检验统计量来结合这两种方法。我们表明,标准的频率主义最大似然比检验统计量对应于具有非信息性杰弗里先验的贝叶斯因子。我们还表明,混合先验在频率主义分析中比最大似然检验统计量提高了统计功效。我们开发了一种不需要昂贵模拟的解析形式,并将威尔克斯定理推广到其通常的有效性范围之外。在特定极限下,该形式重现了现有表达式,如线性模型和周期图的p值。我们将该形式应用于系外行星凌日的一个例子,其中多重性可能超过107。我们表明,我们的解析表达式重现了从数值模拟得出的p值。我们基于统计力学对我们的形式进行了解释。我们使用不确定性体积作为状态量子来引入连续参数空间中的状态计数。我们表明,p值和贝叶斯因子都可以表示为能量与熵的竞争。