Suppr超能文献

基于模糊逻辑的集成智能方法用于优化石墨烯纳米片增强氧化铝纳米复合材料的激光微加工工艺

Integrated Intelligent Method Based on Fuzzy Logic for Optimizing Laser Microfabrication Processing of GnPs-Improved Alumina Nanocomposites.

作者信息

Alqahtani Khaled N, Nasr Mustafa M, Anwar Saqib, Al-Samhan Ali M, Alhaag Mohammed H, Kaid Husam

机构信息

Industrial Engineering Department, College of Engineering, Taibah University, Medina 41411, Saudi Arabia.

Industrial Engineering Department, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia.

出版信息

Micromachines (Basel). 2023 Mar 29;14(4):750. doi: 10.3390/mi14040750.

Abstract

Studies on using multifunctional graphene nanostructures to enhance the microfabrication processing of monolithic alumina are still rare and too limited to meet the requirements of green manufacturing criteria. Therefore, this study aims to increase the ablation depth and material removal rate and minimize the roughness of the fabricated microchannel of alumina-based nanocomposites. To achieve this, high-density alumina nanocomposites with different graphene nanoplatelet (GnP) contents (0.5 wt.%, 1 wt.%, 1.5 wt.%, and 2.5 wt.%) were fabricated. Afterward, statistical analysis based on the full factorial design was performed to study the influence of the graphene reinforcement ratio, scanning speed, and frequency on material removal rate (MRR), surface roughness, and ablation depth during low-power laser micromachining. After that, an integrated intelligent multi-objective optimization approach based on the adaptive neuro-fuzzy inference system (ANIFS) and multi-objective particle swarm optimization approach was developed to monitor and find the optimal GnP ratio and microlaser parameters. The results reveal that the GnP reinforcement ratio significantly affects the laser micromachining performance of AlO nanocomposites. This study also revealed that the developed ANFIS models could obtain an accurate estimation model for monitoring the surface roughness, MRR, and ablation depth with fewer errors than 52.07%, 100.15%, and 76% for surface roughness, MRR, and ablation depth, respectively, in comparison with the mathematical models. The integrated intelligent optimization approach indicated that a GnP reinforcement ratio of 2.16, scanning speed of 342 mm/s, and frequency of 20 kHz led to the fabrication of microchannels with high quality and accuracy of AlO nanocomposites. In contrast, the unreinforced alumina could not be machined using the same optimized parameters with low-power laser technology. Henceforth, an integrated intelligence method is a powerful tool for monitoring and optimizing the micromachining processes of ceramic nanocomposites, as demonstrated by the obtained results.

摘要

关于使用多功能石墨烯纳米结构来增强整体氧化铝微加工工艺的研究仍然很少,且极为有限,无法满足绿色制造标准的要求。因此,本研究旨在提高烧蚀深度和材料去除率,并使氧化铝基纳米复合材料微通道加工后的粗糙度最小化。为实现这一目标,制备了具有不同石墨烯纳米片(GnP)含量(0.5 wt.%、1 wt.%、1.5 wt.%和2.5 wt.%)的高密度氧化铝纳米复合材料。随后,基于全因子设计进行统计分析,以研究在低功率激光微加工过程中,石墨烯增强比例、扫描速度和频率对材料去除率(MRR)、表面粗糙度和烧蚀深度的影响。之后,开发了一种基于自适应神经模糊推理系统(ANIFS)和多目标粒子群优化方法的集成智能多目标优化方法,以监测并找到最佳的GnP比例和微激光参数。结果表明,GnP增强比例对AlO纳米复合材料的激光微加工性能有显著影响。本研究还表明,与数学模型相比,所开发的ANFIS模型能够获得用于监测表面粗糙度、MRR和烧蚀深度的准确估计模型,其表面粗糙度、MRR和烧蚀深度的误差分别比数学模型少52.07%、100.15%和76%。集成智能优化方法表明,GnP增强比例为2.16、扫描速度为342 mm/s和频率为20 kHz时,能够制造出高质量、高精度的AlO纳米复合材料微通道。相比之下,未增强的氧化铝无法使用相同的优化参数通过低功率激光技术进行加工。因此,如所得结果所示,集成智能方法是监测和优化陶瓷纳米复合材料微加工过程的有力工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/499f/10141361/ad9ff8d08f2c/micromachines-14-00750-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验