School of Mechanical Electronic and Information Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China.
Sci Rep. 2023 Jul 8;13(1):11092. doi: 10.1038/s41598-023-38365-6.
Solid backfilling in coal mining refers to filling the goaf with solid materials to form a support structure, ensuring safety in the ground and upper mining areas. This mining method maximizes coal production and addresses environmental requirements. However, in traditional backfill mining, challenges exist, such as limited perception variables, independent sensing devices, insufficient sensing data, and data isolation. These issues hinder the real-time monitoring of backfilling operations and limit intelligent process development. This paper proposes a perception network framework specifically designed for key data in solid backfilling operations to address these challenges. Specifically, it analyses critical perception objects in the backfilling process and proposes a perception network and functional framework for the coal mine backfilling Internet of Things (IoT). These frameworks facilitate rapidly concentrating key perception data into a unified data centre. Subsequently, the paper investigates the assurance of data validity in the perception system of the solid backfilling operation within this framework. Specifically, it considers potential data anomalies that may arise from the rapid data concentration in the perception network. To mitigate this issue, a transformer-based anomaly detection model is proposed, which filters out data that does not reflect the true state of perception objects in solid backfilling operations. Finally, experimental design and validation are conducted. The experimental results demonstrate that the proposed anomaly detection model achieves an accuracy of 90%, indicating its effective detection capability. Moreover, the model exhibits good generalization ability, making it suitable for monitoring data validity in scenarios involving increased perception objects in solid backfilling perception systems.
矸石充填采煤是指用固体材料填充采空区,形成支撑结构,确保地面和上部采区的安全。这种采煤方法最大限度地提高了煤炭产量,并满足了环境要求。然而,在传统的充填采煤中,存在一些挑战,如感知变量有限、独立的传感设备、传感数据不足和数据孤立等问题。这些问题阻碍了充填作业的实时监测,限制了智能工艺的发展。本文提出了一个专门针对矸石充填作业关键数据的感知网络框架,以解决这些挑战。具体来说,它分析了充填过程中的关键感知对象,并提出了煤矿充填物联网的感知网络和功能框架。这些框架有助于将关键感知数据快速集中到统一的数据中心。随后,本文研究了该框架内矸石充填作业感知系统中数据有效性的保证。具体来说,它考虑了在感知网络中快速集中数据可能导致的潜在数据异常。为了解决这个问题,提出了一种基于变压器的异常检测模型,该模型可以滤除不能反映矸石充填作业中感知对象真实状态的数据。最后,进行了实验设计和验证。实验结果表明,所提出的异常检测模型的准确率达到 90%,表明其具有有效的检测能力。此外,该模型具有良好的泛化能力,适用于监测矸石充填感知系统中感知对象增加时的数据有效性。