Suppr超能文献

单一突变调控橙色荧光蓝藻发色团的荧光和发色反应。

A Single-Site Mutation Tunes Fluorescence and Chromophorylation of an Orange Fluorescent Cyanobacteriochrome.

机构信息

Department of Chemistry, University of Houston, 3585 Cullen Blvd, Houston, TX, 77204, USA.

出版信息

Chembiochem. 2023 Oct 4;24(19):e202300358. doi: 10.1002/cbic.202300358. Epub 2023 Aug 22.

Abstract

Cyanobacteriochrome (CBCR) cGMP-specific phosphodiesterase, adenylyl cyclase, and FhlA (GAF) domains bind bilin cofactors to confer sensory wavelengths important for various cyanobacterial photosensory processes. Many isolated GAF domains autocatalytically bind bilins, including the third GAF domain of CBCR Slr1393 from Synechocystis sp. PCC6803, which binds phycoerythrobilin (PEB) to yield a bright orange fluorescent protein. Compared to green fluorescent proteins, the smaller size and lack of an oxygen requirement for fluorescence make Slr1393g3 a promising platform for new genetically encoded fluorescent tools. Slr1393g3, however, shows low PEB binding efficiency (chromophorylation) at ~3 % compared to total Slr1393g3 expressed in E. coli. Here we used site-directed mutagenesis and plasmid redesign methods to improve Slr1393g3-PEB binding and demonstrate its utility as a fluorescent marker in live cells. Mutation at a single site, Trp496, tuned the emission over ~30 nm, likely by shifting autoisomerization of PEB to phycourobilin (PUB). Plasmid modifications for tuning relative expression of Slr1393g3 and PEB synthesis enzymes also improved chromophorylation and moving from a dual to single plasmid system facilitated exploration of a range of mutants via site saturation mutagenesis and sequence truncation. Collectively, the PEB/PUB chromophorylation was raised up to a total of 23 % with combined sequence truncation and W496H mutation.

摘要

Cyanobacteriochrome (CBCR) cGMP-特异性磷酸二酯酶、腺苷酸环化酶和 FhlA(GAF)结构域结合双氢卟吩辅因子,赋予各种蓝藻光感觉过程中重要的感觉波长。许多分离的 GAF 结构域可以自动结合双氢卟吩辅因子,包括来自集胞藻 PCC6803 的 CBCR Slr1393 的第三个 GAF 结构域,它结合藻红胆素(PEB)产生亮橙色荧光蛋白。与绿色荧光蛋白相比,Slr1393g3 体积更小,荧光不需要氧气,因此是新的遗传编码荧光工具的有前途的平台。然而,与在大肠杆菌中表达的总 Slr1393g3 相比,Slr1393g3 对 PEB 的结合效率(发色团形成)仅约为 3%。在这里,我们使用定点突变和质粒重新设计方法来提高 Slr1393g3-PEB 结合,并证明其在活细胞中作为荧光标记的用途。单个位点突变,色氨酸 496,将发射波长调谐了约 30nm,可能是通过将 PEB 的自动异构化转移到藻蓝胆素(PUB)来实现的。为了调整 Slr1393g3 和 PEB 合成酶的相对表达而进行的质粒修饰也提高了发色团形成,并从双质粒系统转变为单质粒系统,便于通过位点饱和突变和序列截断来探索一系列突变体。总的来说,通过组合序列截断和 W496H 突变,将 PEB/PUB 发色团形成提高到总共 23%。

相似文献

1
A Single-Site Mutation Tunes Fluorescence and Chromophorylation of an Orange Fluorescent Cyanobacteriochrome.
Chembiochem. 2023 Oct 4;24(19):e202300358. doi: 10.1002/cbic.202300358. Epub 2023 Aug 22.
3
Zinc-Induced Fluorescence Turn-On in Native and Mutant Phycoerythrobilin-Binding Orange Fluorescent Proteins.
Biochemistry. 2023 Oct 3;62(19):2828-2840. doi: 10.1021/acs.biochem.3c00183. Epub 2023 Sep 12.
4
Chromophorylation of cyanobacteriochrome Slr1393 from sp. PCC 6803 is regulated by protein Slr2111 through allosteric interaction.
J Biol Chem. 2018 Nov 16;293(46):17705-17715. doi: 10.1074/jbc.RA118.003830. Epub 2018 Sep 21.
6
Orange fluorescent proteins constructed from cyanobacteriochromes chromophorylated with phycoerythrobilin.
Photochem Photobiol Sci. 2014 May;13(5):757-63. doi: 10.1039/c3pp50411e.
7
Chromophorylation of a Novel Cyanobacteriochrome GAF Domain from and Its Response to Copper Ions.
J Microbiol Biotechnol. 2021 Feb 28;31(2):233-239. doi: 10.4014/jmb.2009.09048.
9
Light-Regulated Synthesis of Cyclic-di-GMP by a Bidomain Construct of the Cyanobacteriochrome Tlr0924 (SesA) without Stable Dimerization.
Biochemistry. 2017 Nov 21;56(46):6145-6154. doi: 10.1021/acs.biochem.7b00734. Epub 2017 Nov 8.
10
Metabolic engineering of Escherichia coli for efficient biosynthesis of fluorescent phycobiliprotein.
Microb Cell Fact. 2019 Mar 20;18(1):58. doi: 10.1186/s12934-019-1100-6.

引用本文的文献

1
2
Zinc-Induced Fluorescence Turn-On in Native and Mutant Phycoerythrobilin-Binding Orange Fluorescent Proteins.
Biochemistry. 2023 Oct 3;62(19):2828-2840. doi: 10.1021/acs.biochem.3c00183. Epub 2023 Sep 12.

本文引用的文献

1
Protein-chromophore interactions controlling photoisomerization in red/green cyanobacteriochromes.
Photochem Photobiol Sci. 2022 Apr;21(4):471-491. doi: 10.1007/s43630-022-00213-3. Epub 2022 Apr 11.
2
Imaging living obligate anaerobic bacteria with bilin-binding fluorescent proteins.
Curr Res Microb Sci. 2020 Sep;1:1-6. doi: 10.1016/j.crmicr.2020.04.001. Epub 2020 May 11.
3
Chromophorylation of a Novel Cyanobacteriochrome GAF Domain from and Its Response to Copper Ions.
J Microbiol Biotechnol. 2021 Feb 28;31(2):233-239. doi: 10.4014/jmb.2009.09048.
4
The interplay between chromophore and protein determines the extended excited state dynamics in a single-domain phytochrome.
Proc Natl Acad Sci U S A. 2020 Jul 14;117(28):16356-16362. doi: 10.1073/pnas.1921706117. Epub 2020 Jun 26.
5
Structural elements regulating the photochromicity in a cyanobacteriochrome.
Proc Natl Acad Sci U S A. 2020 Feb 4;117(5):2432-2440. doi: 10.1073/pnas.1910208117. Epub 2020 Jan 21.
6
Production of Phytochromes by High-Cell-Density Fermentation.
ACS Synth Biol. 2019 Oct 18;8(10):2442-2450. doi: 10.1021/acssynbio.9b00267. Epub 2019 Sep 26.
7
Very Bright Phycoerythrobilin Chromophore for Fluorescence Biolabeling.
Chembiochem. 2019 Nov 4;20(21):2777-2783. doi: 10.1002/cbic.201900273. Epub 2019 Oct 1.
8
Rational conversion of chromophore selectivity of cyanobacteriochromes to accept mammalian intrinsic biliverdin.
Proc Natl Acad Sci U S A. 2019 Apr 23;116(17):8301-8309. doi: 10.1073/pnas.1818836116. Epub 2019 Apr 4.
9
Metabolic engineering of Escherichia coli for efficient biosynthesis of fluorescent phycobiliprotein.
Microb Cell Fact. 2019 Mar 20;18(1):58. doi: 10.1186/s12934-019-1100-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验