Suppr超能文献

基于跨阻放大的容感检测方法与自适应滤波技术在微陀螺仪中的应用。

A capacitance sensing method with trans-impedance based readout circuit and adaptive filtering for micro-gyro.

机构信息

Institute of Electronic Engineering, China Academy of Engineering Physics, Mianyang 621999, China.

Microsystem and Terahertz Research Center, China Academy of Engineering Physics, Chengdu 610200, China.

出版信息

Rev Sci Instrum. 2023 Jul 1;94(7). doi: 10.1063/5.0151655.

Abstract

Trans-impedance amplifier (TIA) based capacitance-voltage (C-V) readout circuit is an attractive choice for micro-machined gyroscope for its simplicity and superior performance. In this work, the noise and the C-V gain characteristics of the TIA circuit are analyzed in detail. Then, a TIA based readout circuit with a C-V gain of about 286 dB is designed, and a series of experiments are conducted to test the performance of the circuit. Both the analysis and test results show that T-network TIA should be avoided as far as possible for its poor noise performance. All results also show that there is a signal-to-noise ratio (SNR) limit for the TIA based readout circuit, and the SNR can only be further improved by filtering. Hence, an adaptive finite impulse response filter is designed to further improve the SNR of the sensed signal. For a gyroscope with a peak-to-peak variable capacitance of about 200 aF, a SNR of 22.8 dB can be achieved by the designed circuit and a SNR of 47 dB can be obtained by further adaptive filtering. Finally, the solution presented in this paper achieves a capacitive sensing resolution of 0.9 aF.

摘要

基于跨阻放大器(TIA)的电容-电压(C-V)读出电路因其简单性和卓越的性能,成为微机械陀螺仪的理想选择。在这项工作中,详细分析了 TIA 电路的噪声和 C-V 增益特性。然后,设计了一个具有约 286 dB 的 C-V 增益的 TIA 读出电路,并进行了一系列实验来测试电路的性能。分析和测试结果均表明,T 网络 TIA 的噪声性能较差,应尽可能避免使用。所有结果还表明,基于 TIA 的读出电路存在信噪比(SNR)限制,只能通过滤波进一步提高 SNR。因此,设计了一种自适应有限脉冲响应滤波器,以进一步提高感测信号的 SNR。对于峰值-峰值电容变化约为 200 aF 的陀螺仪,通过设计的电路可实现 22.8 dB 的 SNR,通过进一步的自适应滤波可获得 47 dB 的 SNR。最后,本文提出的解决方案实现了 0.9 aF 的电容传感分辨率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验