Suppr超能文献

无平衡扩散的活性粒子绑定到一个半柔性聚合物网络:模拟和分数朗之万方程。

Nonequilibrium diffusion of active particles bound to a semiflexible polymer network: Simulations and fractional Langevin equation.

机构信息

Department of Physics, POSTECH, Pohang 37673, Republic of Korea.

Department of Physical Sciences, Aoyama Gakuin University, Sagamihara, Kanagawa 252-5258, Japan.

出版信息

J Chem Phys. 2023 Jul 14;159(2). doi: 10.1063/5.0150224.

Abstract

In a viscoelastic environment, the diffusion of a particle becomes non-Markovian due to the memory effect. An open question concerns quantitatively explaining how self-propulsion particles with directional memory diffuse in such a medium. Based on simulations and analytic theory, we address this issue with active viscoelastic systems where an active particle is connected with multiple semiflexible filaments. Our Langevin dynamics simulations show that the active cross-linker displays superdiffusive and subdiffusive athermal motion with a time-dependent anomalous exponent α. In such viscoelastic feedback, the active particle always exhibits superdiffusion with α = 3/2 at times shorter than the self-propulsion time (τA). At times greater than τA, the subdiffusive motion emerges with α bounded between 1/2 and 3/4. Remarkably, active subdiffusion is reinforced as the active propulsion (Pe) is more vigorous. In the high Pe limit, athermal fluctuation in the stiff filament eventually leads to α = 1/2, which can be misinterpreted with the thermal Rouse motion in a flexible chain. We demonstrate that the motion of active particles cross-linking a network of semiflexible filaments can be governed by a fractional Langevin equation combined with fractional Gaussian noise and an Ornstein-Uhlenbeck noise. We analytically derive the velocity autocorrelation function and mean-squared displacement of the model, explaining their scaling relations as well as the prefactors. We find that there exist the threshold Pe (Pe∗) and crossover times (τ∗ and τ†) above which active viscoelastic dynamics emerge on timescales of τ∗≲ t ≲ τ†. Our study may provide theoretical insight into various nonequilibrium active dynamics in intracellular viscoelastic environments.

摘要

在黏弹性环境中,由于记忆效应,粒子的扩散变得非马尔可夫过程。一个悬而未决的问题是定量解释具有方向记忆的自推进粒子如何在这种介质中扩散。基于模拟和分析理论,我们通过活性黏弹性系统解决了这个问题,其中一个活性粒子与多个半柔性细丝相连。我们的朗之万动力学模拟表明,活性交联剂显示出具有时变异常指数α的超扩散和亚扩散无热运动。在这种黏弹性反馈中,活性粒子在短于自推进时间(τA)的时间内始终表现出α=3/2 的超扩散。在大于τA 的时间内,出现亚扩散运动,α介于 1/2 和 3/4 之间。值得注意的是,随着活性推进(Pe)变得更加剧烈,活性亚扩散得到增强。在高 Pe 极限下,僵硬细丝中的无热涨落最终导致α=1/2,这可能会被柔性链中热的罗瑟运动误解。我们证明,交联半柔性细丝网络的活性粒子的运动可以由分数朗之万方程结合分数高斯噪声和奥恩斯坦-乌伦贝克噪声来控制。我们对模型的速度自相关函数和均方根位移进行了分析推导,解释了它们的标度关系以及前因子。我们发现,存在阈值 Pe(Pe∗)和交叉时间(τ∗和τ†),超过这些时间后,活性黏弹性动力学将在 τ∗≲ t ≲ τ†的时间尺度上出现。我们的研究可能为细胞内黏弹性环境中的各种非平衡活性动力学提供理论见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验