Suppr超能文献

基于深度密集卷积网络的智能型规模化烤烟分级

Intelligent large-scale flue-cured tobacco grading based on deep densely convolutional network.

机构信息

Faculty of Information Science and Engineering, Ocean University of China, Qingdao, 266100, Shandong, China.

School of Computer Engineering, Weifang University, Weifang, 261061, Shandong, China.

出版信息

Sci Rep. 2023 Jul 10;13(1):11119. doi: 10.1038/s41598-023-38334-z.

Abstract

Flue-cured tobacco grading plays a crucial role in tobacco leaf purchase and the formulation of tobacco leaf groups. However, the traditional flue-cured tobacco grading mode is usually manual, which is time-consuming, laborious, and subjective. Hence, it is essential to research more efficient and intelligent flue-cured tobacco grading methods. Most existing methods suffer from the more classes less accuracy problem. Meanwhile, limited by different industry applications, the flue-cured tobacco datasets are hard to be obtained publicly. The existing methods employ relatively small and lower resolution tobacco data that are hard to apply in practice. Therefore, aiming at the insufficiency of feature extraction ability and the inadaptability to multiple flue-cured tobacco grades, we collected the largest and highest resolution dataset and proposed an efficient flue-cured tobacco grading method based on deep densely convolutional network (DenseNet). Diverging from other approaches, our method has a unique connectivity pattern of convolutional neural network that concatenates preceding tobacco feature data. This mode connects all previous layers to the subsequent layer directly for tobacco feature transmission. This idea can better extract depth tobacco image information features and transmit each layer's data, thereby reducing the information loss and encouraging tobacco feature reuse. Then, we designed the whole data pre-processing process and experimented with traditional and deep learning algorithms to verify our dataset usability. The experimental results showed that DenseNet could be easily adapted by changing the output of the fully connected layers. With an accuracy of 0.997, significantly higher than the other intelligent tobacco grading methods, DenseNet came to the best model for solving our flue-cured tobacco grading problem.

摘要

烤烟分级在烟叶收购和烟叶分组配方中起着至关重要的作用。然而,传统的烤烟分级模式通常是人工的,既费时费力,又主观。因此,研究更高效、更智能的烤烟分级方法是非常必要的。大多数现有的方法都存在分类越多精度越低的问题。同时,由于受到不同行业应用的限制,烤烟数据集很难公开获得。现有的方法采用的是相对较小和较低分辨率的烟草数据,很难在实际中应用。因此,针对特征提取能力不足和不适应多种烤烟等级的问题,我们收集了最大和最高分辨率的数据集,并提出了一种基于深度密集卷积网络(DenseNet)的高效烤烟分级方法。与其他方法不同,我们的方法具有卷积神经网络的独特连接模式,它将前面的烟草特征数据串联起来。这种模式将所有前面的层直接连接到后续的层,用于烟草特征传输。这种思想可以更好地提取深度烟草图像信息特征,并传输每个层的数据,从而减少信息丢失,鼓励烟草特征的重用。然后,我们设计了整个数据预处理过程,并尝试了传统和深度学习算法,以验证我们数据集的可用性。实验结果表明,DenseNet 可以通过改变全连接层的输出很容易地进行适应。DenseNet 的准确率达到 0.997,明显高于其他智能烟草分级方法,是解决我们烤烟分级问题的最佳模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec99/10333347/9ce3888a9907/41598_2023_38334_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验