Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, United States.
Proteomics Platform, Broad Institute of MIT and Harvard, Cambridge, United States.
Elife. 2023 Jul 11;12:e81966. doi: 10.7554/eLife.81966.
Ubiquitin-proteasome system (UPS) dysfunction is associated with the pathology of a wide range of human diseases, including myopathies and muscular atrophy. However, the mechanistic understanding of specific components of the regulation of protein turnover during development and disease progression in skeletal muscle is unclear. Mutations in , an E3 ubiquitin ligase cullin3 (CUL3) substrate-specific adapter protein, result in severe congenital nemaline myopathy, but the events that initiate the pathology and the mechanism through which it becomes pervasive remain poorly understood. To characterize the KLHL40-regulated ubiquitin-modified proteome during skeletal muscle development and disease onset, we used global, quantitative mass spectrometry-based ubiquitylome and global proteome analyses of mutant zebrafish during disease progression. Global proteomics during skeletal muscle development revealed extensive remodeling of functional modules linked with sarcomere formation, energy, biosynthetic metabolic processes, and vesicle trafficking. Combined analysis of mutant muscle proteome and ubiquitylome identified thin filament proteins, metabolic enzymes, and ER-Golgi vesicle trafficking pathway proteins regulated by ubiquitylation during muscle development. Our studies identified a role for KLHL40 as a regulator of ER-Golgi anterograde trafficking through ubiquitin-mediated protein degradation of secretion-associated Ras-related GTPase1a (Sar1a). In KLHL40-deficient muscle, defects in ER exit site vesicle formation and downstream transport of extracellular cargo proteins result in structural and functional abnormalities. Our work reveals that the muscle proteome is dynamically fine-tuned by ubiquitylation to regulate skeletal muscle development and uncovers new disease mechanisms for therapeutic development in patients.
泛素-蛋白酶体系统 (UPS) 功能障碍与广泛的人类疾病的病理学有关,包括肌肉疾病和肌肉萎缩。然而,在骨骼肌的发育和疾病进展过程中,蛋白质周转的调节的特定成分的机制理解尚不清楚。E3 泛素连接酶 CUL3 底物特异性衔接蛋白 KLHL40 的突变导致严重的先天性杆状体肌病,但导致发病的事件以及其变得普遍的机制仍知之甚少。为了在骨骼肌发育和疾病发作期间描述 KLHL40 调节的泛素修饰蛋白质组,我们使用基于全局的、定量的质谱泛素组学和全局蛋白质组学分析,研究了疾病进展过程中的 KLHL40 突变的斑马鱼。骨骼肌发育过程中的全局蛋白质组学揭示了与肌节形成、能量、生物合成代谢过程和囊泡运输相关的功能模块的广泛重塑。KLHL40 突变肌肉蛋白质组和泛素组的综合分析鉴定了在肌肉发育过程中通过泛素化调节的细丝蛋白、代谢酶和 ER-Golgi 囊泡运输途径蛋白。我们的研究发现 KLHL40 作为通过泛素介导的蛋白降解调节分泌相关 Ras 相关 GTP 酶 1a (Sar1a) 的 ER-Golgi 顺行运输的调节剂的作用。在 KLHL40 缺陷的肌肉中,内质网出口部位囊泡形成和细胞外货物蛋白下游运输的缺陷导致结构和功能异常。我们的工作表明,泛素化动态精细调节肌肉蛋白质组以调节骨骼肌发育,并为患者的治疗开发揭示了新的疾病机制。