Suppr超能文献

端粒多聚体的堆积相互作用和柔韧性。

Stacking Interactions and Flexibility of Human Telomeric Multimers.

机构信息

Department of Physics and Geology, University of Perugia, Via Alessandro Pascoli, 06123 Perugia, Italy.

CNR-IOM, Department of Physics and Geology, University of Perugia, Via Alessandro Pascoli, 06123 Perugia, Italy.

出版信息

J Am Chem Soc. 2023 Jul 26;145(29):16166-16175. doi: 10.1021/jacs.3c04810. Epub 2023 Jul 11.

Abstract

G-quadruplexes (G4s) are helical four-stranded structures forming from guanine-rich nucleic acid sequences, which are thought to play a role in cancer development and malignant transformation. Most current studies focus on G4 monomers, yet under suitable and biologically relevant conditions, G4s undergo multimerization. Here, we investigate the stacking interactions and structural features of telomeric G4 multimers by means of a novel low-resolution structural approach that combines small-angle X-ray scattering (SAXS) with extremely coarse-grained (ECG) simulations. The degree of multimerization and the strength of the stacking interaction are quantitatively determined in G4 self-assembled multimers. We show that self-assembly induces a significant polydispersity of the G4 multimers with an exponential distribution of contour lengths, consistent with a step-growth polymerization. On increasing DNA concentration, the strength of the stacking interaction between G4 monomers increases, as well as the average number of units in the aggregates. We utilized the same approach to explore the conformational flexibility of a model single-stranded long telomeric sequence. Our findings indicate that its G4 units frequently adopt a beads-on-a-string configuration. We also observe that the interaction between G4 units can be significantly affected by complexation with benchmark ligands. The proposed methodology, which identifies the determinants that govern the formation and structural flexibility of G4 multimers, may be an affordable tool aiding in the selection and design of drugs that target G4s under physiological conditions.

摘要

四链体(G4s)是由富含鸟嘌呤的核酸序列形成的螺旋型四链结构,被认为在癌症的发生和恶性转化中发挥作用。目前大多数研究都集中在 G4 单体上,但在合适且具有生物学相关性的条件下,G4 会发生多聚化。在这里,我们通过一种新颖的低分辨率结构方法,结合小角 X 射线散射(SAXS)和极端粗粒化(ECG)模拟,研究了端粒 G4 多聚体的堆积相互作用和结构特征。通过定量确定 G4 自组装多聚体中的多聚化程度和堆积相互作用强度,我们表明自组装会导致 G4 多聚体的多分散性显著增加,其轮廓长度呈指数分布,与逐步聚合一致。随着 DNA 浓度的增加,G4 单体之间的堆积相互作用强度增加,聚集物中的平均单元数也增加。我们还利用相同的方法探索了模型单链长端粒序列的构象灵活性。我们的研究结果表明,其 G4 单元经常采用串珠式构型。我们还观察到,G4 单元之间的相互作用可以通过与基准配体的络合而受到显著影响。该方法确定了控制 G4 多聚体形成和结构灵活性的决定因素,可能是一种在生理条件下选择和设计靶向 G4 的药物的经济实惠工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a17/10375521/eab19192d3ae/ja3c04810_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验