Suppr超能文献

利用量子化学原子电荷方法通过机器学习确定用于α-和β-取代苯甲酸衍生物的新哈米特常数

Machine Learning Determination of New Hammett's Constants for - and -Substituted Benzoic Acid Derivatives Employing Quantum Chemical Atomic Charge Methods.

作者信息

Monteiro-de-Castro Gabriel, Duarte Julio Cesar, Borges Itamar

机构信息

Departamento de Química, Instituto Militar de Engenharia, Praça General Tibúrcio, 80, Urca, Rio de Janeiro (RJ) 22290-270, Brazil.

Departamento de Engenharia de Computação, Instituto Militar de Engenharia, Praça General Tibúrcio, 80, Urca, Rio de Janeiro (RJ) 22290-270, Brazil.

出版信息

J Org Chem. 2023 Jul 21;88(14):9791-9802. doi: 10.1021/acs.joc.3c00410. Epub 2023 Jul 11.

Abstract

Hammett's constants σ quantify the electron donor or electron acceptor power of a chemical group bonded to an aromatic ring. Their experimental values have been successfully used in many applications, but some are inconsistent or not measured. Therefore, developing an accurate and consistent set of Hammett's values is paramount. In this work,we employed different types of machine learning (ML) algorithms combined with quantum chemical calculations of atomic charges to predict theoretically new Hammett's constants σ, σ, σ, σ, σ, σ, σ, and σ for 90 chemical donor or acceptor groups. New σ values (219), including previously unknown 92, are proposed. The substituent groups were bonded to benzene and - and -substituted benzoic acid derivatives. Among the charge methods (Mulliken, Löwdin, Hirshfeld, and ChelpG), Hirshfeld showed the best agreement for most kinds of σ values. For each type of Hammett constant, linear expressions depending on carbon charges were obtained. The ML approach overall showed very close predictions to the original experimental values, with - and -substituted benzoic acid derivative values showing the most accurate values. A new consistent set of Hammett's constants is presented, as well as simple equations for predicting new values for groups not included in the original set of 90.

摘要

哈米特常数σ量化了与芳环相连的化学基团的给电子或吸电子能力。它们的实验值已在许多应用中成功使用,但有些值不一致或未被测量。因此,开发一套准确且一致的哈米特值至关重要。在这项工作中,我们采用了不同类型的机器学习(ML)算法,并结合原子电荷的量子化学计算,从理论上预测了90个化学给体或受体基团的新哈米特常数σ、σ、σ、σ、σ、σ、σ和σ。提出了新的σ值(219个),其中包括92个以前未知的值。取代基与苯以及对位和间位取代的苯甲酸衍生物相连。在电荷计算方法(穆利肯、洛丁、赫希菲尔德和ChelpG)中,赫希菲尔德对于大多数类型的σ值显示出最佳的一致性。对于每种类型的哈米特常数,都得到了依赖于碳电荷的线性表达式。总体而言,ML方法的预测结果与原始实验值非常接近,对位和间位取代的苯甲酸衍生物的值最为准确。本文给出了一组新的一致的哈米特常数,以及用于预测原始90个基团集合中未包含的基团新值的简单方程。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验