Suppr超能文献

-甲酰甲硫氨酰肽酰-tRNA 模拟物的实用合成。

Practical Synthesis of -Formylmethionylated Peptidyl-tRNA Mimics.

机构信息

Institute of Organic Chemistry and Center for Molecular Biosciences, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria.

Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois 60607, United States.

出版信息

ACS Chem Biol. 2023 Oct 20;18(10):2233-2239. doi: 10.1021/acschembio.3c00237. Epub 2023 Jul 11.

Abstract

Hydrolysis-resistant RNA-peptide conjugates that mimic peptidyl-tRNAs are frequently needed for structural and functional studies of protein synthesis in the ribosome. Such conjugates are accessible by chemical solid-phase synthesis, allowing for the utmost flexibility of both the peptide and the RNA sequence. Commonly used protection group strategies, however, have severe limitations with respect to generating the characteristic -formylmethionyl terminus because the formyl group of the conjugate synthesized at the solid support is easily cleaved during the final basic deprotection/release step. In this study, we demonstrate a simple solution to the problem by coupling appropriately activated -formyl methionine to the fully deprotected conjugate. The structural integrity of the obtained -formylmethionyl conjugate─and hence the chemoselectivity of the reaction─were verified by Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry sequence analysis. Additionally, we confirmed the applicability of our procedure for structural studies by obtaining two structures of the ribosome in complex with either fMAI-nh-ACCA or fMFI-nh-ACCA in the P site and ACC-PMN in the A site of the bacterial ribosome at 2.65 and 2.60 Å resolution, respectively. In summary, our approach for hydrolysis-resistant -formylated RNA-peptide conjugates is synthetically straightforward and opens up new avenues to explore ribosomal translation with high-precision substrate mimics.

摘要

用于核糖体中蛋白质合成的结构和功能研究的水解抗性 RNA-肽缀合物经常需要模拟肽酰-tRNA。这些缀合物可以通过化学固相合成获得,从而使肽和 RNA 序列具有最大的灵活性。然而,常用的保护基策略在生成特征性甲酰甲硫氨酸末端方面具有严重的局限性,因为在固相结合物的最终碱性脱保护/释放步骤中,缀合物合成的甲酰基很容易被切断。在这项研究中,我们通过将适当激活的甲酰甲硫氨酸与完全脱保护的缀合物偶联,证明了该问题的简单解决方案。通过傅里叶变换离子回旋共振(FT-ICR)质谱序列分析验证了获得的甲酰甲硫氨酸缀合物的结构完整性,从而证明了反应的化学选择性。此外,我们通过获得在细菌核糖体的 P 位和 A 位的 ACC-PMN 中的 fMAI-nh-ACCA 或 fMFI-nh-ACCA 的复合物中的核糖体的两个结构,在 2.65 和 2.60 Å 的分辨率下,分别证实了我们的方法在结构研究中的适用性。总之,我们用于水解抗性甲酰化 RNA-肽缀合物的方法在合成上非常简单,为使用高精度底物模拟物探索核糖体翻译开辟了新途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e79/10594587/cd0dd0ca8f9a/cb3c00237_0001.jpg

相似文献

1
Practical Synthesis of -Formylmethionylated Peptidyl-tRNA Mimics.
ACS Chem Biol. 2023 Oct 20;18(10):2233-2239. doi: 10.1021/acschembio.3c00237. Epub 2023 Jul 11.
2
A Universal Support for the Solid-Phase Synthesis of Peptidyl-tRNA Mimics.
Chembiochem. 2025 Jan 2;26(1):e202400717. doi: 10.1002/cbic.202400717. Epub 2024 Nov 14.
3
Synthesis of Peptidyl-tRNA Mimics for Structural Biology Applications.
Acc Chem Res. 2023 Oct 3;56(19):2713-2725. doi: 10.1021/acs.accounts.3c00412. Epub 2023 Sep 20.
6
Native chemical ligation of hydrolysis-resistant 3'-peptidyl-tRNA mimics.
J Am Chem Soc. 2011 Nov 30;133(47):19068-71. doi: 10.1021/ja209053b. Epub 2011 Nov 3.
9
ArfA recruits release factor 2 to rescue stalled ribosomes by peptidyl-tRNA hydrolysis in Escherichia coli.
Mol Microbiol. 2012 Oct;86(1):37-50. doi: 10.1111/j.1365-2958.2012.08190.x. Epub 2012 Aug 22.
10
Synthesis of aminoacylated N(6),N(6)-dimethyladenosine solid support for efficient access to hydrolysis-resistant 3'-charged tRNA mimics.
Bioorg Med Chem. 2014 Dec 15;22(24):6989-95. doi: 10.1016/j.bmc.2014.09.054. Epub 2014 Oct 13.

引用本文的文献

1
Synthesis of Peptidyl-tRNA Mimics for Structural Biology Applications.
Acc Chem Res. 2023 Oct 3;56(19):2713-2725. doi: 10.1021/acs.accounts.3c00412. Epub 2023 Sep 20.

本文引用的文献

1
Insights into the ribosome function from the structures of non-arrested ribosome-nascent chain complexes.
Nat Chem. 2023 Jan;15(1):143-153. doi: 10.1038/s41557-022-01073-1. Epub 2022 Oct 31.
2
Structural basis for the context-specific action of the classic peptidyl transferase inhibitor chloramphenicol.
Nat Struct Mol Biol. 2022 Feb;29(2):152-161. doi: 10.1038/s41594-022-00720-y. Epub 2022 Feb 14.
3
Structural and mechanistic basis for translation inhibition by macrolide and ketolide antibiotics.
Nat Commun. 2021 Jul 22;12(1):4466. doi: 10.1038/s41467-021-24674-9.
4
Structure of Erm-modified 70S ribosome reveals the mechanism of macrolide resistance.
Nat Chem Biol. 2021 Apr;17(4):412-420. doi: 10.1038/s41589-020-00715-0. Epub 2021 Jan 18.
5
Amine-to-Azide Conversion on Native RNA via Metal-Free Diazotransfer Opens New Avenues for RNA Manipulations.
Angew Chem Int Ed Engl. 2021 Mar 22;60(13):6970-6974. doi: 10.1002/anie.202015034. Epub 2021 Feb 18.
6
Cryo-EM of elongating ribosome with EF-Tu•GTP elucidates tRNA proofreading.
Nature. 2020 Aug;584(7822):640-645. doi: 10.1038/s41586-020-2447-x. Epub 2020 Jul 1.
7
Ornithine capture by a translating ribosome controls bacterial polyamine synthesis.
Nat Microbiol. 2020 Apr;5(4):554-561. doi: 10.1038/s41564-020-0669-1. Epub 2020 Feb 24.
8
tRNA 3'-amino-tailing for stable amino acid attachment.
RNA. 2018 Dec;24(12):1878-1885. doi: 10.1261/rna.068015.118. Epub 2018 Sep 14.
9
How Macrolide Antibiotics Work.
Trends Biochem Sci. 2018 Sep;43(9):668-684. doi: 10.1016/j.tibs.2018.06.011. Epub 2018 Jul 24.
10
Ribosome-Targeting Antibiotics: Modes of Action, Mechanisms of Resistance, and Implications for Drug Design.
Annu Rev Biochem. 2018 Jun 20;87:451-478. doi: 10.1146/annurev-biochem-062917-011942. Epub 2018 Mar 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验