Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA.
Division of Coastal Sciences, School of Ocean Science and Engineering, The University of Southern Mississippi, Ocean Springs, MS, USA.
J Therm Biol. 2023 Jul;115:103613. doi: 10.1016/j.jtherbio.2023.103613. Epub 2023 Jun 22.
Understanding where and why organisms are experiencing thermal and hydric stress is critical for predicting species' responses to climate change. Biophysical models that explicitly link organismal functional traits like morphology, physiology, and behavior to environmental conditions can provide valuable insight into determinants of thermal and hydric stress. Here we use a combination of direct measurements, 3D modeling, and computational fluid dynamics to develop a detailed biophysical model of the sand fiddler crab, Leptuca pugilator. We compare the detailed model's performance to a model using a simpler ellipsoidal approximation of a crab. The detailed model predicted crab body temperatures within 1 °C of observed in both laboratory and field settings; the ellipsoidal approximation model predicted body temperatures within 2 °C of observed body temperatures. Model predictions are meaningfully improved through efforts to incorporate species-specific morphological properties rather than relying on simple geometric approximations. Experimental evaporative water loss (EWL) measurements indicate that L. pugilator can modify its permeability to EWL as a function of vapor density gradients, providing novel insight into physiological thermoregulation in the species. Body temperature and EWL predictions made over the course of a year at a single site demonstrate how such biophysical models can be used to explore mechanistic drivers and spatiotemporal patterns of thermal and hydric stress, providing insight into current and future distributions in the face of climate change.
了解生物在何处以及为何会经历热胁迫和水胁迫对于预测物种对气候变化的响应至关重要。将生物体的功能特征(如形态、生理和行为)与环境条件明确联系起来的生物物理模型,可以深入了解热胁迫和水胁迫的决定因素。在这里,我们结合直接测量、3D 建模和计算流体动力学,开发了沙蟹(Leptuca pugilator)的详细生物物理模型。我们将详细模型的性能与使用蟹体简化的椭圆体近似模型进行了比较。在实验室和野外环境中,详细模型预测的蟹体温度与实际测量温度相差 1°C 以内;而椭圆体近似模型预测的温度与实际测量温度相差 2°C 以内。通过努力纳入物种特有的形态特征,而不是依赖简单的几何近似,模型的预测得到了显著改善。实验性蒸发失水(EWL)测量表明,L. pugilator 可以根据蒸汽密度梯度来调节其 EWL 的通透性,为该物种的生理热调节提供了新的见解。在一个地点进行的为期一年的体温和 EWL 预测表明,这种生物物理模型可用于探索热胁迫和水胁迫的机制驱动因素和时空模式,为应对气候变化时当前和未来的分布提供了深入了解。