Suppr超能文献

室温离子束合成超细碳化钼纳米颗粒:迈向一种用于储量丰富的地球元素电极的可扩展制造路线。

Room Temperature Ion Beam Synthesis of Ultra-Fine Molybdenum Carbide Nanoparticles: Toward a Scalable Fabrication Route for Earth-Abundant Electrodes.

作者信息

Fiedler Holger, Malone Niall, Mitchell David R G, Nancarrow Mitchell, Jovic Vedran, Waterhouse Geoffrey I N, Kennedy John, Gupta Prasanth

机构信息

National Isotope Centre, GNS Science, 30 Gracefield Road, Lower Hutt, 5010, New Zealand.

School of Chemical Sciences, The University of Auckland, Auckland, 1010, New Zealand.

出版信息

Small. 2024 Sep;20(39):e2304118. doi: 10.1002/smll.202304118. Epub 2023 Jul 12.

Abstract

Molybdenum carbides are promising low-cost electrocatalysts for electrolyzers, fuel cells, and batteries. However, synthesis of ultrafine, phase-pure carbide nanoparticles (diameter < 5 nm) with large surface areas remains challenging due to uncontrollable agglomeration that occurs during traditional high temperature syntheses. This work presents a scalable, physical approach to synthesize molybdenum carbide nanoparticles at room temperature by ion implantation. By tuning the implantation conditions, various molybdenum carbide phases, stoichiometries, and nanoparticle sizes can be accessed. For instance, molybdenum ion implantation into glassy carbon at 30 keV energy and to a fluence of 9 × 10 at cm yields a surface η-MoC with a particle diameter of (10 ± 1) nm. Molybdenum implantation into glassy carbon at 60 keV to a fluence of 6 × 10 at cm yields a buried layer of ultrafine γ'-MoC/η-MoC nanoparticles. Carbon ion implantation at 20 keV into a molybdenum thin film produces a 40 nm thick layer primarily composed of β-MoC. The formation of nanoparticles in each molybdenum carbide phase is explained based on the Mo-C phase diagram and Monte-Carlo simulations of ion-solid interactions invoking the thermal spike model. The approaches presented are widely applicable for synthesis of other transition metal carbide nanoparticles as well.

摘要

碳化钼是用于电解槽、燃料电池和电池的很有前景的低成本电催化剂。然而,由于传统高温合成过程中不可控的团聚现象,合成具有大表面积的超细、相纯的碳化物纳米颗粒(直径<5nm)仍然具有挑战性。这项工作提出了一种可扩展的物理方法,通过离子注入在室温下合成碳化钼纳米颗粒。通过调整注入条件,可以获得各种碳化钼相、化学计量比和纳米颗粒尺寸。例如,以30keV的能量和9×10 at cm的注量将钼离子注入玻璃碳中,可得到粒径为(10±1)nm的表面η-MoC。以60keV的能量和6×10 at cm的注量将钼注入玻璃碳中,可得到一层埋藏的超细γ'-MoC/η-MoC纳米颗粒。以20keV的能量将碳离子注入钼薄膜中,可产生一层主要由β-MoC组成的40nm厚的层。基于Mo-C相图和调用热尖峰模型的离子-固体相互作用的蒙特卡罗模拟,解释了每个碳化钼相中纳米颗粒的形成。所提出的方法也广泛适用于其他过渡金属碳化物纳米颗粒的合成。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验