Chang Xinwei, Liu Tingting, Li Weilong, Gao Rongxin, Lei Hao, Ren Zhaoyu
Institute of Photonics and Photon-Technology, Northwest University, Xi'an 710069, China; College of Physics & Electronic Engineering, Xianyang Normal University, Xianyang 712000, China.
College of Physics & Electronic Engineering, Xianyang Normal University, Xianyang 712000, China.
J Colloid Interface Sci. 2023 Nov 15;650(Pt A):728-741. doi: 10.1016/j.jcis.2023.07.036. Epub 2023 Jul 7.
Nickel-iron bimetallic phosphide (Ni-Fe-P) is the ideal battery-type materials for supercapacitor in virtue of high theoretical specific capacitance. Nevertheless, its actual adhibition is astricted on account of inferior rate capability and cyclic stability. Herein, we constructed hierarchical core-shell nanocomposites with hollow mesoporous carbon nanospheres (HMCS) packaged via prussian blue analogs derived Ni-Fe-P nanocubes (Ni-Fe-P@HMCS), as a positive electrode for hybrid supercapacitor (HSC). Profiting from the cooperative effects of Ni-Fe-P nanocubes with small size and good dispersibility, and HMCS with continuously conductive network, the Ni-Fe-P@HMCS composite electrode with abundantly porous architectures presents an ultrahigh gravimetric specific capacity for 739.8 C g under 1 A g. Specially, the Ni-Fe-P@HMCS electrode presents outstanding rate capability of 78.4% (1 A g to 20 A g) and cyclic constancy for 105% after 5000 cycles. Density functional theory implies that the composite electrode possesses higher electrical conductivity than bare Ni-Fe-P electrode by reason of the incremental charge density, and the electrons transferring from NiFeP to HMCS layers. Additionally, the assembled Ni-Fe-P@HMCS//HMCS HSC facility delivers the high energy density for 64.1 Wh kg, remarkable flexibility and mechanical stability. Thus, this work proffers a viable and efficacious measure to construct ultra-stability electrode for high-performance portable electronic facilities.
镍铁磷化物(Ni-Fe-P)由于具有高理论比电容,是超级电容器理想的电池型材料。然而,由于其较差的倍率性能和循环稳定性,其实际应用受到限制。在此,我们构建了一种具有分级核壳结构的纳米复合材料,即通过普鲁士蓝类似物衍生的Ni-Fe-P纳米立方体(Ni-Fe-P@HMCS)包裹的中空介孔碳纳米球(HMCS),作为混合超级电容器(HSC)的正极。得益于小尺寸且分散性良好的Ni-Fe-P纳米立方体与具有连续导电网络的HMCS的协同效应,具有大量多孔结构的Ni-Fe-P@HMCS复合电极在1 A g电流密度下展现出739.8 C g的超高比电容。特别地,Ni-Fe-P@HMCS电极在1 A g至20 A g电流密度下具有78.4%的出色倍率性能,在5000次循环后循环稳定性保持在105%。密度泛函理论表明,由于电荷密度增加以及电子从NiFeP转移到HMCS层,复合电极比裸Ni-Fe-P电极具有更高的电导率。此外,组装的Ni-Fe-P@HMCS//HMCS HSC器件具有64.1 Wh kg的高能量密度、出色的柔韧性和机械稳定性。因此,这项工作为构建用于高性能便携式电子设备的超稳定电极提供了一种可行且有效的方法。