Suppr超能文献

基于多元分解和 XGBoost 算法的碳价预测。

Carbon price prediction based on multiple decomposition and XGBoost algorithm.

机构信息

School of Computer Science and Technology, China University of Mining and Technology, Xuzhou, China.

School of Finance, Xuzhou University of Technology, Xuzhou, China.

出版信息

Environ Sci Pollut Res Int. 2023 Aug;30(38):89165-89179. doi: 10.1007/s11356-023-28563-0. Epub 2023 Jul 14.

Abstract

Carbon trading is an effective way to limit global carbon dioxide emissions. The carbon pricing mechanisms play an essential role in the decision of the market participants and policymakers. This study proposes a carbon price prediction model, multi-decomposition-XGBOOST, which is based on sample entropy and a new multiple decomposition algorithm. The main steps of the proposed model are as follows: (1) decompose the price series into multiple intrinsic mode functions (IMFs) by using complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN); (2) decompose the IMF with the highest sample entropy by variational mode decomposition (VMD); (3) select and recombine some IMFs based on their sample entropy, and then perform another round of decomposition via CEEMDAN; (4) predict IMFs by XGBoost model and sum up the prediction results. The model has exhibited reliable predictive performance in both the highly fluctuating Beijing carbon market and the comparatively stable Hubei carbon market. The proposed model in Beijing carbon market achieves improvements of 30.437%, 44.543%, and 42.895% in RMSE, MAE, and MAPE, when compared to the single XGBoost models. Similarly, in Hubei carbon market, the RMSE, MAE, and MAPE based on multi-decomposition-XGBOOST model decreased by 28.504%, 39.356%, and 39.394%. The findings indicate that the proposed model has better predictive performance for both volatile and stable carbon prices.

摘要

碳交易是限制全球二氧化碳排放的有效方法。碳定价机制在市场参与者和政策制定者的决策中起着至关重要的作用。本研究提出了一种碳价格预测模型,即多分解-XGBOOST,该模型基于样本熵和一种新的多分解算法。该模型的主要步骤如下:(1)使用完全集合经验模态分解自适应噪声(CEEMDAN)将价格序列分解为多个固有模态函数(IMF);(2)通过变分模态分解(VMD)对具有最高样本熵的 IMF 进行分解;(3)根据其样本熵选择和重新组合一些 IMF,并通过 CEEMDAN 再次进行分解;(4)通过 XGBoost 模型对 IMF 进行预测并汇总预测结果。该模型在北京碳市场和相对稳定的湖北碳市场中均表现出可靠的预测性能。与单一的 XGBoost 模型相比,在北京碳市场中,该模型在 RMSE、MAE 和 MAPE 方面的改进分别达到了 30.437%、44.543%和 42.895%。同样,在湖北碳市场中,基于多分解-XGBOOST 模型的 RMSE、MAE 和 MAPE 分别降低了 28.504%、39.356%和 39.394%。研究结果表明,该模型对波动和稳定的碳价格均具有更好的预测性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验